Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Vis Exp ; (209)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39141548

ABSTRACT

Cellular quiescence is a state of growth arrest or slowed proliferation that is described in normal and cancer stem cells (CSCs). Quiescence may protect CSCs from antiproliferative chemotherapy drugs. In T-cell acute lymphoblastic leukemia (T-ALL) patient-derived xenograft (PDX) mouse models, quiescent cells are associated with treatment resistance and stemness. Cell proliferation dyes are popular tools for the tracking of cell division. The fluorescent dye is covalently anchored into amine groups on the membrane and macromolecules inside the cell. This allows for the tracking of labeled cells for up to 10 divisions, which can be resolved by flow cytometry. Ultimately, cells with the highest proliferation rates will have low dye retention, as it will be diluted with each cell division, while dormant, slower-dividing cells will have the highest retention. The use of cell proliferation dyes to isolate dormant cells has been optimized and described in T-ALL mouse models. Complementary to the existing mouse models, the rag2:Myc-derived zebrafish T-ALL model provides an excellent venue to interrogate self-renewal in T-ALL due to the high frequency of leukemic stem cells (LSCs) and the convenience of zebrafish for large-scale transplant experiments. Here, we describe the workflow for the staining of zebrafish T-ALL cells with a cell proliferation dye, optimizing the concentration of the dye for zebrafish cells, passaging successfully stained cells in vivo, and the collection of cells with varying levels of dye retention by live cell sorting from transplanted animals. Given the absence of well-established cell surface makers for LSCs in T-ALL, this approach provides a functional means to interrogate quiescent cells in vivo. For representative results, we describe the engraftment efficiency and the LSC frequency of high and low dye-retaining cells. This method can help investigate additional properties of quiescent cells, including drug response, transcriptional profiles, and morphology.


Subject(s)
Cell Proliferation , Fluorescent Dyes , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Zebrafish , Animals , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Fluorescent Dyes/chemistry , Disease Models, Animal , Neoplastic Stem Cells/pathology , Flow Cytometry/methods
2.
Biomed Pharmacother ; 170: 116013, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38104416

ABSTRACT

The Wnt/ß-catenin pathway's significance in cancer initiation, progression, and stem cell biology underscores its therapeutic potential. However, the clinical application of Wnt inhibitors remains limited due to challenges posed by off-target effects and complex cross-talk of Wnt signaling with other pathways. In this study, we leveraged a zebrafish model to perform a robust and rapid drug screening of 773 FDA-approved compounds to identify Wnt/ß-catenin inhibitors with minimal toxicity. Utilizing zebrafish expressing a Wnt reporter, we identified several drugs that suppressed Wnt signaling without compromising zebrafish development. The efficacy of the top hit, Erlotinib, extended to human cells, where it blocked Wnt/ß-catenin signaling downstream of the destruction complex. Notably, Erlotinib treatment reduced self-renewal in human T-cell Acute Lymphoblastic Leukemia cells, which rely on active ß-catenin signaling for maintenance of leukemia-initiating cells. Erlotinib also reduced leukemia-initiating cell frequency and delayed disease formation in zebrafish models. This study underscores zebrafish's translational potential in drug discovery and repurposing and highlights a new use for Erlotinib as a Wnt inhibitor for cancers driven by aberrant Wnt/ß-catenin signaling.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Wnt Signaling Pathway , Animals , Humans , Erlotinib Hydrochloride/pharmacology , Erlotinib Hydrochloride/therapeutic use , Zebrafish/metabolism , beta Catenin/metabolism , Drug Evaluation, Preclinical , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , T-Lymphocytes/metabolism
3.
bioRxiv ; 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37693603

ABSTRACT

The Wnt/ß-catenin pathway's significance in cancer initiation, progression, and stem cell biology underscores its therapeutic potential, yet clinical application of Wnt inhibitors remains limited due to challenges posed by off-target effects and complex crosstalk with other pathways. In this study, we leveraged the zebrafish model to perform a robust and rapid drug screening of 773 FDA-approved compounds to identify Wnt/ß-catenin inhibitors with minimal toxicity. Utilizing zebrafish expressing a Wnt reporter, we identified several drugs that suppressed Wnt signaling without compromising zebrafish development. The efficacy of the top hit, Erlotinib, extended to human cells, where it blocked Wnt/ß-catenin signaling downstream of the destruction complex. Notably, Erlotinib treatment reduced self-renewal in human T-cell Acute Lymphoblastic Leukemia cells, which are known to rely on active ß-catenin signaling for maintenance of leukemia-initiating cells. Erlotinib also reduced leukemia-initiating cell frequency and delayed disease formation in zebrafish models. This study underscores zebrafish's translational potential in drug discovery and repurposing, and highlights a new use for Erlotinib as a Wnt inhibitor for cancers driven by aberrant Wnt/ß-catenin signaling. Highlights: Zebrafish-based drug screening offers an inexpensive and robust platform for identifying compounds with high efficacy and low toxicity in vivo . Erlotinib, an Epidermal Growth Factor Receptor (EGFR) inhibitor, emerged as a potent and promising Wnt inhibitor with effects in both zebrafish and human cell-based Wnt reporter assays.The identification of Erlotinib as a Wnt inhibitor underscores the value of repurposed drugs in developing targeted therapies to disrupt cancer stemness and improve clinical outcomes.

4.
Int J Mol Sci ; 24(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36768609

ABSTRACT

The increasing number of available anti-cancer drugs presents a challenge for oncologists, who must choose the most effective treatment for the patient. Precision cancer medicine relies on matching a drug with a tumor's molecular profile to optimize the therapeutic benefit. However, current precision medicine approaches do not fully account for intra-tumoral heterogeneity. Different mutation profiles and cell behaviors within a single heterogeneous tumor can significantly impact therapy response and patient outcomes. Patient-derived avatar models recapitulate a patient's tumor in an animal or dish and provide the means to functionally assess heterogeneity's impact on drug response. Mouse xenograft and organoid avatars are well-established, but the time required to generate these models is not practical for clinical decision-making. Zebrafish are emerging as a time-efficient and cost-effective cancer avatar model. In this review, we highlight recent developments in zebrafish cancer avatar models and discuss the unique features of zebrafish that make them ideal for the interrogation of cancer heterogeneity and as part of precision cancer medicine pipelines.


Subject(s)
Neoplasms , Zebrafish , Humans , Mice , Animals , Zebrafish/genetics , Neoplasms/drug therapy , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL