Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Ann Bot ; 133(4): 547-558, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38180460

ABSTRACT

BACKGROUND AND AIMS: The softening of ripening fruit involves partial depolymerization of cell-wall pectin by three types of reaction: enzymic hydrolysis, enzymic elimination (lyase-catalysed) and non-enzymic oxidative scission. Two known lyase activities are pectate lyase and rhamnogalacturonan lyase (RGL), potentially causing mid-chain cleavage of homogalacturonan and rhamnogalacturonan-I (RG-I) domains of pectin respectively. However, the important biological question of whether RGL exhibits action in vivo had not been tested. METHODS: We developed a method for specifically and sensitively detecting in-vivo RGL products, based on Driselase digestion of cell walls and detection of a characteristic unsaturated 'fingerprint' product (tetrasaccharide) of RGL action. KEY RESULTS: In model experiments, potato RG-I that had been partially cleaved in vitro by commercial RGL was digested by Driselase, releasing an unsaturated tetrasaccharide ('ΔUA-Rha-GalA-Rha'), taken as diagnostic of RGL action. This highly acidic fingerprint compound was separated from monosaccharides (galacturonate, galactose, rhamnose, etc.) by electrophoresis at pH 2, then separated from ΔUA-GalA (the fingerprint of pectate lyase action) by thin-layer chromatography. The 'ΔUA-Rha-GalA-Rha' was confirmed as 4-deoxy-ß-l-threo-hex-4-enopyranuronosyl-(1→2)-l-rhamnosyl-(1→4)-d-galacturonosyl-(1→2)-l-rhamnose by mass spectrometry and acid hydrolysis. Driselase digestion of cell walls from diverse ripe fruits [date, sea buckthorn, cranberry, yew (arils), mango, plum, blackberry, apple, pear and strawberry] yielded the same fingerprint compound, demonstrating that RGL had been acting in vivo in these fruits prior to harvest. The 'fingerprint' : (galacturonate + rhamnose) ratio in digests from ripe dates was approximately 1 : 72 (mol/mol), indicating that ~1.4 % of the backbone Rha→GalA bonds in endogenous RG-I had been cleaved by in-vivo RGL action. CONCLUSIONS: The results provide the first demonstration that RGL, previously known from studies of fruit gene expression, proteomic studies and in-vitro enzyme activity, exhibits enzyme action in the walls of soft fruits and may thus be proposed to contribute to fruit softening.


Subject(s)
Cell Wall , Fruit , Pectins , Polysaccharide-Lyases , Polysaccharide-Lyases/metabolism , Fruit/enzymology , Cell Wall/metabolism , Pectins/metabolism
2.
Ann Bot ; 128(5): 511-525, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34111288

ABSTRACT

BACKGROUND AND AIMS: The programmed softening occurring during fruit development requires scission of cell wall polysaccharides, especially pectin. Proposed mechanisms include the action of wall enzymes or hydroxyl radicals. Enzyme activities found in fruit extracts include pectate lyase (PL) and endo-polygalacturonase (EPG), which, in vitro, cleave de-esterified homogalacturonan in mid-chain by ß-elimination and hydrolysis, respectively. However, the important biological question of whether PL exhibits action in vivo had not been tested. METHODS: We developed a method for specifically and sensitively detecting in-vivo PL products, based on Driselase digestion of cell wall polysaccharides and detection of the characteristic unsaturated product of PL action. KEY RESULTS: In model in-vitro experiments, pectic homogalacturonan that had been partially cleaved by commercial PL was digested to completion with Driselase, releasing an unsaturated disaccharide ('ΔUA-GalA'), taken as diagnostic of PL action. ΔUA-GalA was separated from saturated oligogalacturonides (EPG products) by electrophoresis, then subjected to thin-layer chromatography (TLC), resolving ΔUA-GalA from higher homologues. The ΔUA-GalA was confirmed as 4-deoxy-ß-l-threo-hex-4-enopyranuronosyl-(1→4)-d-galacturonic acid by NMR spectroscopy. Driselase digestion of cell walls from ripe fruits of date (Phoenix dactylifera), pear (Pyrus communis), rowan (Sorbus aucuparia) and apple (Malus pumila) yielded ΔUA-GalA, demonstrating that PL had been acting in vivo in these fruits prior to harvest. Date-derived ΔUA-GalA was verified by negative-mode mass spectrometry, including collision-induced dissociation (CID) fragmentation. The ΔUA-GalA:GalA ratio from ripe dates was roughly 1:20 (mol mol-1), indicating that approx. 5 % of the bonds in endogenous homogalacturonan had been cleaved by in-vivo PL action. CONCLUSIONS: The results provide the first demonstration that PL, previously known from studies of fruit gene expression, proteomic studies and in-vitro enzyme activity, exhibits enzyme action in the walls of soft fruits and may thus be proposed to contribute to fruit softening.


Subject(s)
Fruit , Phoeniceae , Cell Wall , Pectins , Polysaccharide-Lyases , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL