Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Ticks Tick Borne Dis ; 11(6): 101511, 2020 11.
Article in English | MEDLINE | ID: mdl-32993931

ABSTRACT

Candidatus Rickettsia vini was originally detected in Ixodes arboricola ticks from Spain, and subsequently reported from several other Western Palearctic countries including Belgium. Recently, the bacterium was isolated in mammalian (Vero) cell culture from macerated male I. arboricola from Czech Republic, but there have been no reports of propagation in tick cells. Here we report isolation in a tick cell line of three strains of Ca. R. vini from I. arboricola collected from nests of great tits (Parus major) in Belgium. Internal organs of one male and two engorged female ticks were dissected aseptically, added to cultures of the Rhipicephalus microplus cell line BME/CTVM23 and incubated at 28 °C. Rickettsia-like bacteria were first seen in Giemsa-stained cytocentrifuge smears between 2 and 15 weeks later. Two of the isolates grew rapidly, destroying the tick cells within 2-4 weeks of onward passage in BME/CTVM23 cells, while the third isolate grew much more slowly, only requiring subculture at 4-5-month intervals. PCR amplification of bacterial 16S rRNA and Rickettsia gltA, sca4, ompB, ompA and 17-kDa genes revealed that all three isolates were Ca. R. vini, with 100 % identity to each other and to published Ca. R. vini sequences from other geographical locations. Transmission electron microscopy revealed typical single Rickettsia bacteria in the cytoplasm of BME/CTVM23 cells. The Ca. R. vini strain isolated from the male I. arboricola tick, designated Boshoek1, was tested for ability to grow in a panel of Ixodes ricinus, Ixodes scapularis and R. microplus cell lines and in Vero cells. The Boshoek1 strain grew rapidly, causing severe cytopathic effect, in the R. microplus line BME26, the I. ricinus line IRE11 and Vero cells, more slowly in the I. ricinus line IRE/CTVM19, possibly established a low-level infection in the I. ricinus line IRE/CTVM20, and failed to infect cells of any of four I. scapularis lines over a 12-week observation period. This study confirmed the applicability of the simple tick organ-cell line co-cultivation technique for isolation of tick-borne Rickettsia spp. using BME/CTVM23 cells.


Subject(s)
Ixodes/microbiology , Rickettsia/isolation & purification , Animals , Belgium , Cell Line , Female , Genes, Bacterial , Male , Phylogeny , Rickettsia/classification
2.
Microorganisms ; 8(7)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630209

ABSTRACT

Wolbachia are intracellular endosymbionts of several invertebrate taxa, including insects and nematodes. Although Wolbachia DNA has been detected in ticks, its presence is generally associated with parasitism by insects. To determine whether or not Wolbachia can infect and grow in tick cells, cell lines from three tick species, Ixodes scapularis, Ixodes ricinus and Rhipicephalus microplus, were inoculated with Wolbachia strains wStri and wAlbB isolated from mosquito cell lines. Homogenates prepared from fleas collected from cats in Malaysia were inoculated into an I. scapularis cell line. Bacterial growth and identity were monitored by microscopy and PCR amplification and sequencing of fragments of Wolbachia genes. The wStri strain infected Ixodes spp. cells and was maintained through 29 passages. The wAlbB strain successfully infected Ixodes spp. and R. microplus cells and was maintained through 2-5 passages. A novel strain of Wolbachia belonging to the supergroup F, designated wCfeF, was isolated in I. scapularis cells from a pool of Ctenocephalides sp. cat fleas and maintained in vitro through two passages over nine months. This is the first confirmed isolation of a Wolbachia strain from a flea and the first isolation of any Wolbachia strain outside the "pandemic" A and B supergroups. The study demonstrates that tick cells can host multiple Wolbachia strains, and can be added to panels of insect cell lines to improve success rates in isolation of field strains of Wolbachia.

3.
Ticks Tick Borne Dis ; 11(1): 101299, 2020 01.
Article in English | MEDLINE | ID: mdl-31542229

ABSTRACT

Vertically-transmitted bacterial symbionts are widespread in ticks and have manifold impacts on the epidemiology of tick-borne diseases. For instance, they may provide essential nutrients to ticks, affect vector competence, induce immune responses in vertebrate hosts, or even evolve to become vertebrate pathogens. The deer or blacklegged tick Ixodes scapularis harbours the symbiont Rickettsia buchneri in its ovarian tissues. Here we show by molecular, proteomic and imaging methods that R. buchneri is also capable of colonising the salivary glands of wild I. scapularis. This finding has important implications for the diagnosis of rickettsial infections and for pathogen-symbiont interactions in this notorious vector of Lyme borreliosis.


Subject(s)
Ixodes/microbiology , Rickettsia/physiology , Symbiosis , Animals , Proteomics , Salivary Glands/diagnostic imaging , Salivary Glands/microbiology
4.
Ticks Tick Borne Dis ; 10(1): 52-62, 2019 01.
Article in English | MEDLINE | ID: mdl-30197267

ABSTRACT

Ticks have relatively complex microbiomes, but only a small proportion of the bacterial symbionts recorded from ticks are vertically transmitted. Moreover, co-cladogenesis between ticks and their symbionts, indicating an intimate relationship over evolutionary history driven by a mutualistic association, is the exception rather than the rule. One of the most widespread tick symbionts is Candidatus Midichloria, which has been detected in all of the major tick genera of medical and veterinary importance. In some species of Ixodes, such as the sheep tick Ixodes ricinus (infected with Candidatus Midichloria mitochondrii), the symbiont is fixed in wild adult female ticks, suggesting an obligate mutualism. However, almost no information is available on genetic variation in Candidatus M. mitochondrii or possible co-cladogenesis with its host across its geographic range. Here, we report the first survey of Candidatus M. mitochondrii in I. ricinus in Great Britain and a multi-locus sequence typing (MLST) analysis of tick and symbiont between British ticks and those collected in continental Europe. We show that while the prevalence of the symbiont in nymphs collected in England is similar to that reported from the continent, a higher prevalence in nymphs and adult males is apparent in Wales. In general, Candidatus M. mitochondrii exhibits very low levels of sequence diversity, although a consistent signal of host-symbiont coevolution was apparent in Scotland. Moreover, the tick MLST scheme revealed that Scottish specimens form a clade that is partially separated from other British ticks, with almost no contribution of continental sequence types in this north-westerly border of the tick's natural range. The low diversity of Candidatus M. mitochondrii, in contrast with previously reported high rates of polymorphism in I. ricinus mitogenomes, suggests that the symbiont may have swept across Europe recently via a horizontal, rather than vertical, transmission route.


Subject(s)
Genetic Variation , Ixodes/genetics , Rickettsiales/genetics , Animals , Arthropod Proteins/analysis , Bacterial Proteins/analysis , Europe , Ixodes/microbiology , Male , Mitochondrial Proteins/analysis , Multilocus Sequence Typing , Nymph , Rickettsiales/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...