Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Oral Investig ; 24(10): 3485-3500, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32065310

ABSTRACT

BACKGROUND: The present study evaluated the cellular tissue reaction of two equine-derived collagen hemostatic sponges (E-CHS), which differed in thickness after pressing, over 30 days in vivo. The inflammatory response during physiological wound healing in sham-operated animals was used as control group. MATERIAL AND METHODS: First, the E-CHS was pressed by applying constant pressure (6.47 ± 0.85 N) for 2 min using a sterile stainless-steel cylinder until the material was uniformly flattened. Consequently, the original (E-CHS), the pressed (P-E-CHS), as well as the control group (CG; sham operation) were studied independently. The 3 groups were evaluated in vivo after subcutaneous implantation in Wistar rats during 3, 15, and 30 days. Histochemical and immunohistochemical methods provided observations of biomaterial degradation rate, cellular inflammatory response, and vascularization pattern. A derivative of human blood known as platelet-rich fibrin (PRF) was used as an ex vivo model to simulate the initial biomaterial-cell interaction. Segments of E-CHS and P-E-CHS were cultivated for 3 and 6 days with PRF, and the release of pro-inflammatory proteins was measured using ELISA. PRF cultivated alone was used as a control group. RESULTS: At day 3, the CG induced a statistically significant higher presence of monocytes/macrophages (CD68+), pro-inflammatory macrophages (M1; CCR7+), and pro-wound healing macrophages (M2; CD206+) compared to E-CHS and P-E-CHS. At the same time point, P-E-CHS induced a statistically significant higher presence of CD68+ cells compared to E-CHS. After 15 days, E-CHS was invaded by cells and vessels and showed a faster disintegration rate compared to P-E-CHS. On the contrary, cells and vessels were located only in the outer region of P-E-CHS and the biomaterial did not lose its structure and accordingly did not undergo disintegration. The experimental groups induced similar inflammatory reaction primarily with positive pro-inflammatory CD68+/CCR7+ macrophages and a low presence of multinucleated giant cells (MNGCs). At this time point, significantly lower CD68+/CCR7+ macrophages and no MNGCs were detected within the CG when compared to the experimental groups (P < 0.05). After 30 days, E-CHS and P-E-CHS were fully degraded. All groups showed similar inflammatory reaction shifted to a higher presence CD206+ macrophages. A low number of CCR7+ MNGCs were still observable in the implantation bed of both experimental groups. In the ex vivo model, the cells and fibrin from PRF penetrated E-CHS. However, in the case of P-E-CHS, the cells and fibrin stayed on the surface and did not penetrate towards materials central regions. The cultivation of P-E-CHS with PRF induced a statically significant higher release of pro-inflammatory proteins compared to the CG and E-CHS after 3 days. CONCLUSION: Altering the original presentation of a hemostatic sponge biomaterial by pressing modified the initial biomaterial-cell interaction, delayed the early biomaterial's degradation rate, and altered the vascularization pattern. A pressed biomaterial seems to induce a higher inflammatory reaction at early time points. However, altering the biomaterial did not modify the polarization pattern of macrophages compared to physiologic wound healing. The ex vivo model using PRF was shown to be an effective model to simulate the initial biomaterial-cell interaction in vivo. CLINICAL RELEVANCE: A pressed hemostatic sponge could be applied for guided tissue regeneration and guided bone regeneration. In that sense, within the limitations of this study, the results show that the same biomaterial may have two specific clinical indications.


Subject(s)
Macrophages , Animals , Biocompatible Materials , Collagen , Horses , Humans , Platelet-Rich Fibrin , Rats , Rats, Wistar
2.
Eur Cell Mater ; 37: 250-264, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30963526

ABSTRACT

Different tissue engineering techniques are used to support rapid vascularisation. A novel technique is the use of platelet-rich fibrin (PRF), an autologous source of growth factors. This study was the first to investigate the influence of PRF matrices, isolated following different centrifugation protocols, on human dermal vascular endothelial cells (ECs) in mono-culture and co-culture with human primary fibroblasts (HFs) as an in vitro model for tissue regeneration. Focus was placed on vascular structure formation and growth factor release. HFs and ECs were cultivated with PRF prepared using a high (710 ×g) or low (44 ×g) relative centrifugation force (RCF) over 14 d. Immunofluorescence staining and immunohistochemistry were used to evaluate the microvascular formation. Cell culture supernatants were collected for evaluation of growth factor release. The results showed a PRF-mediated effect on the induction of angiogenesis in ECs. Microvessel-like structure formation was promoted when ECs were combined with low-RCF PRF as compared to high-RCF PRF or control group. The percentage of vascular lumen area was significantly higher in low-RCF PRF, especially at day 7, which coincided with statistically significantly higher growth factor [vascular endothelial factor (VEGF), transforming growth factor ß1 (TGF-ß1) and platelet derived growth factor (PDGF)] concentration measured in low-RCF PRF as compared to high-RCF PRF or control group. In conclusion, reducing the RCF according to the low-speed centrifugation concept (LSCC) resulted in increased growth factor release and angiogenic structure formation with EC mono-culture, suggesting that PRF may be a highly beneficial therapeutic tool for tissue engineering applications.


Subject(s)
Endothelial Cells/metabolism , Fibroblasts/metabolism , Intercellular Signaling Peptides and Proteins , Neovascularization, Physiologic/drug effects , Platelet-Rich Fibrin , Cell Culture Techniques , Endothelial Cells/cytology , Fibroblasts/cytology , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology
3.
Biomed Tech (Berl) ; 64(s1): 47-52, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30753139
4.
Eur J Trauma Emerg Surg ; 45(3): 467-479, 2019 Jun.
Article in English | MEDLINE | ID: mdl-28324162

ABSTRACT

Purpose The present study evaluated the platelet distribution pattern and growth factor release (VEGF, TGF-ß1 and EGF) within three PRF (platelet-rich-fibrin) matrices (PRF, A-PRF and A-PRF+) that were prepared using different relative centrifugation forces (RCF) and centrifugation times. Materials and methods immunohistochemistry was conducted to assess the platelet distribution pattern within three PRF matrices. The growth factor release was measured over 10 days using ELISA. Results The VEGF protein content showed the highest release on day 7; A-PRF+ showed a significantly higher rate than A-PRF and PRF. The accumulated release on day 10 was significantly higher in A-PRF+ compared with A-PRF and PRF. TGF-ß1 release in A-PRF and A-PRF+ showed significantly higher values on days 7 and 10 compared with PRF. EGF release revealed a maximum at 24 h in all groups. Toward the end of the study, A-PRF+ demonstrated significantly higher EGF release than PRF. The accumulated growth factor releases of TGF-ß1 and EGF on day 10 were significantly higher in A-PRF+ and A-PRF than in PRF. Moreover, platelets were located homogenously throughout the matrix in the A-PRF and A-PRF+ groups, whereas platelets in PRF were primarily observed within the lower portion. ​Discussion the present results show an increase growthfactor release by decreased RCF. However, further studies must be conducted to examine the extent to which enhancing the amount and the rate of released growth factors influence wound healing and biomaterial-based tissue regeneration. ​Conclusion These outcomes accentuate the fact that with a reduction of RCF according to the previously LSCC (described low speed centrifugation concept), growth factor release can be increased in leukocytes and platelets within the solid PRF matrices.


Subject(s)
Blood Platelets/metabolism , Centrifugation/methods , Epidermal Growth Factor/metabolism , Platelet-Rich Fibrin/metabolism , Transforming Growth Factor beta1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Adult , Female , Healthy Volunteers , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Male , Middle Aged , Proof of Concept Study , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...