Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 15: 1358089, 2024.
Article in English | MEDLINE | ID: mdl-38650632

ABSTRACT

This study discusses the synthesis and use of a new library of spirooxindole-benzimidazole compounds as inhibitors of the signal transducer and activator of p53, a protein involved in regulating cell growth and cancer prevention. The text includes the scientific details of the [3 + 2] cycloaddition (32CA) reaction between azomethine ylide 7a and ethylene 3a within the framework of Molecular Electron Density Theory. The mechanism of the 32CA reaction proceeds through a two-stage one-step process, with emphasis on the highly asynchronous transition state structure. The anti-cancer properties of the synthesized compounds, particularly 6a and 6d, were evaluated. The inhibitory effects of these compounds on the growth of tumor cells (MDA-MB 231 and PC-3) were quantified using IC50 values. This study highlights activation of the p53 pathway by compounds 6a and 6d, leading to upregulation of p53 expression and downregulation of cyclin D and NF-κB in treated cells. Additionally, we explored the binding affinity of spirooxindole analogs, particularly compound 6d, to MDM2, a protein involved in regulation of p53. The binding mode and position of compound 6d were compared with those of a co-crystallized standard ligand, suggesting its potential as a lead compound for further preclinical research.

2.
Front Chem ; 12: 1364378, 2024.
Article in English | MEDLINE | ID: mdl-38487783

ABSTRACT

Cancer represents a global challenge, and the pursuit of developing new cancer treatments that are potent, safe, less prone to drug resistance, and associated with fewer side effects poses a significant challenge in cancer research and drug discovery. Drawing inspiration from pyrrolidinyl-spirooxindole natural products, a novel series of spirooxindoles has been synthesized through a one-pot three-component reaction, involving a [3 + 2] cycloaddition reaction. The cytotoxicity against breast cancer cells (MCF-7 and MDA-MB-231) and safety profile against WISH cells of the newly developed library were assessed using the MTT assay. Compounds 5l and 5o exhibited notable cytotoxicity against MCF-7 cells (IC50 = 3.4 and 4.12 µM, respectively) and MDA-MB-231 cells (IC50 = 8.45 and 4.32 µM, respectively) compared to Erlotinib. Conversely, compounds 5a-f displayed promising cytotoxicity against MCF-7 cells with IC50 values range (IC50 = 5.87-18.5 µM) with selective activity against MDA-MB-231 cancer cells. Compound 5g demonstrated the highest cytotoxicity (IC50 = 2.8 µM) among the tested compounds. Additionally, compounds 5g, 5l, and 5n were found to be safe (non-cytotoxic) against WISH cells with higher IC50 values ranging from 39.33 to 47.2 µM. Compounds 5g, 5l, and 5n underwent testing for their inhibitory effects against EGFR and CDK-2. Remarkably, they demonstrated potent EGFR inhibition, with IC50 values of 0.026, 0.067, and 0.04 µM and inhibition percentages of 92.6%, 89.8%, and 91.2%, respectively, when compared to Erlotinib (IC50 = 0.03 µM, 95.4%). Furthermore, these compounds exhibited potent CDK-2 inhibition, with IC50 values of 0.301, 0.345, and 0.557 µM and inhibition percentages of 91.9%, 89.4%, and 88.7%, respectively, in contrast to Roscovitine (IC50 = 0.556 µM, 92.1%). RT-PCR analysis was performed on both untreated and 5g-treated MCF-7 cells to confirm apoptotic cell death. Treatment with 5g increased the gene expression of pro-apoptotic genes P53, Bax, caspases 3, 8, and 9 with notable fold changes while decreasing the expression of the anti-apoptotic gene Bcl-2. Molecular docking and dynamic simulations (100 ns simulation using AMBER22) were conducted to investigate the binding mode of the most potent candidates, namely, 5g, 5l, and 5n, within the active sites of EGFR and CDK-2.

4.
J Enzyme Inhib Med Chem ; 38(1): 2281260, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37994663

ABSTRACT

Despite the crucial role of CDK2 in tumorigenesis, few inhibitors reached clinical trials for managing lung cancer, the leading cause of cancer death. Herein, we report combinatorial stereoselective synthesis of rationally designed spiroindeno[1,2-b]quinoxaline-based CDK2 inhibitors for NSCLC therapy. The design relied on merging pharmacophoric motifs and biomimetic scaffold hopping into this privileged skeleton via cost-effective one-pot multicomponent [3 + 2] cycloaddition reaction. Absolute configuration was assigned by single crystal x-ray diffraction analysis and reaction mechanism was studied by Molecular Electron Density Theory. Initial MTT screening of the series against A549 cells and normal lung fibroblasts Wi-38 elected 6b as the study hit regarding potency (IC50 = 54 nM) and safety (SI = 6.64). In vitro CDK2 inhibition assay revealed that 6b (IC50 = 177 nM) was comparable to roscovitine (IC50 = 141 nM). Docking and molecular dynamic simulations suggested that 6b was stabilised into CDK2 cavity by hydrophobic interactions with key aminoacids.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Cyclin-Dependent Kinase 2 , Lung Neoplasms , Humans , Antineoplastic Agents/chemistry , Benzimidazoles/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Proliferation , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Drug Screening Assays, Antitumor , Lung Neoplasms/drug therapy , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Kinase Inhibitors/chemistry , Quinoxalines
5.
Molecules ; 28(19)2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37836817

ABSTRACT

A new series of spirooxindoles based on benzimidazole, triazole, and isatin moieties were synthesized via a [3+2] cycloaddition reaction protocol in one step. The single X-ray crystal structure of the intermediate triazole-benzimidazole 4 was solved. The new chemical structures of these spirooxindole molecules have been achieved for the first time. The final synthesized chemical architecture has differently characterized electronic effects. An MEDT study of the key 32CA reaction between in situ generated azomethine ylide (AY) and chalcones explained the low reaction rates and the total selectivities observed. The supernucleophilic character of AY and the strong electrophilicity of chalcones favor these reactions through a highly polar two-stage one-step mechanism in which bond formation at the ß-conjugated carbon of the chalcones is more advanced. The present combined experimental and theoretical study reports the synthesis of new spirooxindoles with potential biological activities and fully characterizes the molecular mechanisms for their formation through the key 32CA reaction step.

6.
Chem Biol Drug Des ; 102(5): 972-995, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37563748

ABSTRACT

A novel spirooxindole-pyrrolidine clubbed thiochromene and pyrazole motifs were synthesized by [3+2] cycloaddition (32CA) reactions in one step process starting from the ethylene-based thiochromene and pyrazole scaffolds with the secondary amino-acids and substituted isatins in high yield. The 32CA reaction of AY 10 with ethylene derivative 6 has also been studied with Molecular Electron Density Theory. The high nucleophilic character of AY 10, N = 4.39 eV, allows explaining that the most favorable TS-on is 13.9 kcal mol-1 below the separated reagent. This 32CA, which takes place through a non-concerted one-step mechanism, presents a total ortho regio- and endo stereoselectivity, which is controlled by the formation of two intramolecular H… O hydrogen bonds. The design of spirooxindole-pyrrolidines engrafted thiochromene and pyrazole was tested for alpha-amylase inhibition and show a high efficacy in nanoscale range of reactivity. The key interaction between the most active hybrids and the receptor was studied by molecular docking. The physiochemical properties of the designed spirooxindole-pyrrolidines were carried out by in silico ADMET prediction. The newly synthesized most potent hybrid could be considered as a lead compound for drug discovery development for type 2 diabetes mellitus (T2DM).

7.
Sci Rep ; 13(1): 7441, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37156796

ABSTRACT

Recently, cancer research protocols have introduced clinical-stage spirooxindole-based MDM2 inhibitors. However, several studies reported tumor resistance to the treatment. This directed efforts to invest in designing various combinatorial libraries of spirooxindoles. Herein, we introduce new series of spirooxindoles via hybridization of the chemically stable core spiro[3H-indole-3,2'-pyrrolidin]-2(1H)-one and the pyrazole motif inspired by lead pyrazole-based p53 activators, the MDM2 inhibitor BI-0252 and promising molecules previously reported by our group. Single crystal X-ray diffraction analysis confirmed the chemical identity of a representative derivative. Fifteen derivatives were screened for cytotoxic activities via MTT assay against a panel of four cancer cell lines expressing wild-type p53 (A2780, A549, HepG2) and mutant p53 (MDA-MB-453). The hits were 8h against A2780 (IC50 = 10.3 µM) and HepG2 (IC50 = 18.6 µM), 8m against A549 (IC50 = 17.7 µM), and 8k against MDA-MB-453 (IC50 = 21.4 µM). Further MTT experiments showed that 8h and 8j potentiated doxorubicin activity and reduced its IC50 by at least 25% in combinations. Western blot analysis demonstrated that 8k and 8m downmodulated MDM2 in A549 cells. Their possible binding mode with MDM2 were simulated by docking analysis.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Humans , Female , Cell Line, Tumor , A549 Cells , Tumor Suppressor Protein p53/metabolism , Cell Proliferation , Proto-Oncogene Proteins c-mdm2/metabolism , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Doxorubicin/pharmacology , Pyrazoles/pharmacology
8.
Arch Pharm (Weinheim) ; 356(8): e2300185, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37253118

ABSTRACT

A series of 16 novel spirooxindole analogs 8a-p were designed and constructed via cost-effective single-step multicomponent [3+2] cycloaddition reaction of azomethine ylide (AY) generated in situ from substituted isatin (6a-d) with suitable amino acids (7a-c) and ethylene-engrafted pyrazole derivatives (5a,b). The potency of all compounds was assayed against a human breast cancer cell line (MCF-7) and a human liver cell line (HepG2). Spiro compound 8c was the most active member among the synthesized candidates, with exceptional cytotoxicity against the MCF-7 and HepG2 cell lines, with IC50 values of 0.189 ± 0.01 and 1.04 ± 0.21 µM, respectively. The candidate 8c exhibited more potent activity (10.10- and 2.27-fold) than the standard drug roscovitine (IC50 = 1.91 ± 0.17 µM (MCF-7) and 2.36 ± 0.21 µM (HepG2)). Compound 8c was investigated for epidermal growth factor receptor (EGFR) inhibition; it exhibited promising IC50 values of 96.6 nM compared with 67.3 nM for erlotinib. The IC50 value of 8c (34.98 nM) exhibited cyclin-dependent kinase 2 (CDK-2) inhibition, being more active than roscovitine the (IC50 = 140 nM) in targeting the CDK-2 kinase enzyme. Additionally, for apoptosis induction of compound 8c in MCF-7, it upregulated the expression levels of proapoptotic genes for P53, Bax, caspases-3, 8, and 9 at up to 6.18, 4.8, 9.8, 4.6, 11.3 fold-change, respectively, and downregualted the level of the antiapoptotic gene for Bcl-2 by 0.14-fold. Finally, a molecular docking study of the most active compound 8c highlighted a good binding affinity with Lys89 as the key amino acid for CDK-2 inhibition.


Subject(s)
Antineoplastic Agents , Humans , Oxindoles/pharmacology , Oxindoles/chemistry , Cell Line, Tumor , Structure-Activity Relationship , Roscovitine/pharmacology , Molecular Docking Simulation , Antineoplastic Agents/chemistry , Cell Proliferation , Drug Screening Assays, Antitumor , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Apoptosis
9.
Int J Mol Sci ; 23(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36233160

ABSTRACT

The search for an effective anti-viral to inhibit COVID-19 is a challenge for the specialized scientific research community. This work investigated the anti-coronavirus activity for spirooxindole-based phenylsulfone cycloadducts in a single and combination protocols. The newly designed anti-SARS-CoV-2 therapeutics spirooxindoles synthesized by [3 + 2] cycloaddition reactions represent an efficient approach. One-pot multicomponent reactions between phenyl vinyl sulfone, substituted isatins, and amines afforded highly stereoselective anti-SARS-CoV-2 therapeutics spirooxindoles with three stereogenic centers. Herein, the newly synthesized spirooxindoles were assessed individually against the highly pathogenic human coronaviruses and proved to be highly potent and safer. Interestingly, the synergistic effect by combining the potent, tested spirooxindoles resulted in an improved antiviral activity as well as better host-cell safety. Compounds 4i and 4d represented the most potent activity against MERS-CoV with IC50 values of 11 and 23 µM, respectively. Both compounds 4c and 4e showed equipotent activity with the best IC50 against SARS-CoV-2 with values of 17 and 18 µM, respectively, then compounds 4d and 4k with IC50 values of 24 and 27 µM, respectively. Then, our attention oriented to perform a combination protocol as anti-SARS-CoV-2 for the best compounds with a different binding mode and accompanied with different pharmacophores. Combination of compound 4k with 4c and combination of compounds 4k with 4i proved to be more active and safer. Compounds 4k with 4i displayed IC50 = 3.275 µM and half maximal cytotoxic-concentration CC50 = 11832 µM. MD simulation of the most potential compounds as well as in silico ADMET properties were investigated. This study highlights the potential drug-like properties of spirooxindoles as a cocktail anti-coronavirus protocol.


Subject(s)
COVID-19 Drug Treatment , Middle East Respiratory Syndrome Coronavirus , Amines/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , SARS-CoV-2
10.
ACS Omega ; 7(21): 17984-17994, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35664617

ABSTRACT

A mechanistic approach to understand the course of metabolism for synthetic 1,2,4-trioxanes, potent antimalarial compounds, to evaluate their bioavailability for antimalarial action has been studied in the present work. It is an important parameter to study the course of metabolism of a drug candidate molecule when administered via oral route during its journey from oral intake to its target site. From the pharmacokinetics point of view, it determines the bioavailability of an active drug or a prodrug at the target point. In this work, synthetic arylvinyl-1,2,4-trioxanes 1a-u have been evaluated under various acidic conditions to mimic the milieu of the stomach (pH between 1.5 and 3.5) through which they have to pass when administered orally. The effect of acid on trioxanes led to their degradation into corresponding ketones and glyoxal. Under such acidic conditions glyoxal polymerized to form a nonisolable condensate product. The study indicates that the actual bioavailability of the drug is far less than the administered dose.

11.
RSC Adv ; 12(10): 6149-6165, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35424540

ABSTRACT

The highly efficient Lewis acid-catalytic system Cu(ii)-thiophene-2,5-bis(amino-alcohol) has been developed for enantioselective Aldol reaction of isatin derivatives with ketones. The new catalytic system also proved to be highly enantioselective for the one pot three-component Domino Knoevenagel Michael cyclization reaction of substituted isatin with malononitrile and ethylacetoacetate. The chiral ligand (2S,2'S)-2,2'-((thiophene-2,5-diylbis(methylene))bis(azanediyl))bis(3-phenylpropan-1-ol) (L1) in combination with Cu(OAc)2·H2O employed as a new Lewis acid catalyst, furnished 3-substituted-3-hydroxyindolin-2-ones derivatives (3a-s) in good to excellent yields (81-99%) with high enantioselectivities (up to 96% ee) and spiro[4H-pyran-3,3-oxindole] derivatives (6a-l) in excellent yields (89-99%) with high ee (up to 95%). These aldol products and spiro-oxindoles constitute a core structural motif in a large number of pharmaceutically active molecules and natural products.

12.
Molecules ; 26(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34885853

ABSTRACT

Straightforward regio- and diastereoselective synthesis of bi-spirooxindole-engrafted rhodanine analogs 5a-d were achieved by one-pot multicomponent [3 + 2] cycloaddition (32CA) reaction of stabilized azomethine ylide (AYs 3a-d) generated in situ by condensation of L-thioproline and 6-chloro-isatin with (E)-2-(5-(4-chlorobenzylidene)-2,4-dioxothiazolidin-3-yl)-N-(2-morpholinoethyl)acetamide. The bi-spirooxindole-engrafted rhodanine analogs were constructed with excellent diastereo- and regioselectivity along with high chemical yield. X-ray crystallographic investigations for hybrid 5a revealed the presence of four contiguous stereocenters related to C11, C12, C19 and C22 of the spiro structure. Hirshfeld calculations indicated the presence of many short intermolecular contacts such as Cl...C, S...S, S...H, O...H, N...H, H...C, C...C and H...H interactions. These contacts played a very important role in the crystal stability. The polar nature of the 32CA reaction was studied by analysis of the conceptual DFT reactivity indices. Theoretical study of this 32CA reaction indicated that it takes place through a non-concerted two-stage one-step mechanism associated with the nucleophilic attack of AY 3a to the electrophilic ethylene derivative.

13.
Molecules ; 26(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34885989

ABSTRACT

Five new C2-symmetric chiral ligands of 2,5-bis(imidazolinyl)thiophene (L1-L3) and 2,5-bis(oxazolinyl)thiophene (L4 and L5) were synthesized from thiophene-2,5-dicarboxylic acid (1) with enantiopure amino alcohols (4a-c) in excellent optical purity and chemical yield. The utility of these new chiral ligands for Friedel-Crafts asymmetric alkylation was explored. Subsequently, the optimized tridentate ligand L5 and Cu(OTf)2 catalyst (15 mol%) in toluene for 48 h promoted Friedel-Crafts asymmetric alkylation in moderate to good yields (up to 76%) and with good enantioselectivity (up to 81% ee). The bis(oxazolinyl)thiophene ligands were more potent than bis(imidazolinyl)thiophene analogues for the asymmetric induction of the Friedel-Crafts asymmetric alkylation.

14.
ACS Omega ; 6(47): 31539-31556, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34869980

ABSTRACT

Twenty-five new hits of spirooxindole analogs 8a-y engrafted with indole and pyrazole scaffolds were designed and constructed via a [3+2]cycloaddition (32CA) reaction starting from three components: new chalcone-based indole and pyrazole scaffolds 5a-d, substituted isatins 6a-c, and secondary amines 7a-d. The potency of the compounds were assessed in modulating cholinesterase (AChE) activity using Ellman's method. Compounds 8i and 8y showed the strongest acetylcholine esterase inhibition (AChEI) with IC50 values of 24.1 and 27.8 µM, respectively. Molecular docking was used to study their interaction with the active site of hAChE.

15.
Molecules ; 26(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34684885

ABSTRACT

A new series of di-spirooxindole analogs, engrafted with oxindole and cyclohexanone moieties, were synthesized. Initially, azomethine ylides were generated via reaction of the substituted isatins 3a-f (isatin, 3a, 6-chloroisatin, 3b, 5-fluoroisatin, 3c, 5-nitroisatin, 3d, 5-methoxyisatin, 3e, and 5-methylisatin, 3f, and (2S)-octahydro-1H-indole-2-carboxylic acid 2, in situ azomethine ylides reacted with the cyclohexanone based-chalcone 1a-f to afford the target di-spirooxindole compounds 4a-n. This one-pot method provided diverse structurally complex molecules, with biologically relevant spirocycles in a good yields. All synthesized di-spirooxindole analogs, engrafted with oxindole and cyclohexanone moieties, were evaluated for their anticancer activity against four cancer cell lines, including prostate PC3, cervical HeLa, and breast (MCF-7, and MDA-MB231) cancer cell lines. The cytotoxicity of these di-spirooxindole analogs was also examined against human fibroblast BJ cell lines, and they appeared to be non-cytotoxic. Compound 4b was identified as the most active member of this series against prostate cancer cell line PC3 (IC50 = 3.7 ± 1.0 µM). The cyclohexanone engrafted di-spirooxindole analogs 4a and 4l (IC50 = 7.1 ± 0.2, and 7.2 ± 0.5 µM, respectively) were active against HeLa cancer cells, whereas NO2 substituted isatin ring and meta-fluoro-substituted (2E,6E)-2,6-dibenzylidenecyclohexanone containing 4i (IC50 = 7.63 ± 0.08 µM) appeared to be a promising agent against the triple negative breast cancer MDA-MB231 cell line. To explore the plausible mechanism of anticancer activity of di-spirooxindole analogs, molecular docking studies were investigated which suggested that spirooxindole analogs potentially inhibit the activity of MDM2.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cyclohexanones/chemistry , Oxindoles/chemistry , Spiro Compounds/chemistry , Antineoplastic Agents/pharmacology , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor/methods , Fibroblasts/drug effects , HeLa Cells , Humans , MCF-7 Cells , Molecular Docking Simulation , PC-3 Cells , Structure-Activity Relationship
16.
Molecules ; 26(8)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921334

ABSTRACT

The Friedel-Crafts reaction between substituted indoles as nucleophiles with chalcones-based benzofuran and benzothiophene scaffolds was carried out by employing a highly efficient bimetallic iron-palladium catalyst system. This catalytic approach produced the desired bis-heteroaryl products with low catalyst loading, a simple procedure, and with acceptable yield. All synthesized indole scaffolds 3a-3s were initially evaluated for their cytotoxic effect against human fibroblast BJ cell lines and appeared to be non-cytotoxic. All non-cytotoxic compounds 3a-3s were then evaluated for their anticancer activities against cervical cancer HeLa, prostate cancer PC3, and breast cancer MCF-7 cell lines, in comparison to standard drug doxorubicin, with IC50 values 1.9 ± 0.4 µM, 0.9 ± 0.14 µM and 0.79 ± 0.05 µM, respectively, and appeared to be moderate to weak anticancer agents. Fluoro-substituted chalcone moiety-containing compounds, 3b appeared to be the most active member of the series against cervical HeLa (IC50 = 8.2 ± 0.2 µM) and breast MCF-7 cancer cell line (IC50 = 12.3 ± 0.04 µM), whereas 6-fluroindol-4-bromophenyl chalcone-containing compound 3e (IC50 = 7.8 ± 0.4 µM) appeared to be more active against PC3 prostate cancer cell line.


Subject(s)
Antineoplastic Agents/pharmacology , Indoles/pharmacology , Iron/chemistry , Lewis Acids/chemistry , Palladium/chemistry , Antineoplastic Agents/chemistry , Catalysis , Cell Line, Tumor , Chalcones/chemical synthesis , Chalcones/chemistry , Chalcones/pharmacology , Humans , Indoles/chemical synthesis , Indoles/chemistry , Inhibitory Concentration 50
17.
Molecules ; 25(20)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066293

ABSTRACT

A series of new oxindole-based spiro-heterocycles bearing the benzo[b]thiophene motif were synthesized via a 1,3-dipolar cycloaddition reaction and their acetylcholinesterase (AChE) inhibitory activity was evaluated. All the synthesized compounds exhibited moderate inhibitory activities against AChE, while IIc was found to be the most active analog with an IC50 value of 20,840 µM·L-1. Its molecular structure was a 5-chloro-substituted oxindole bearing benzo[b]thiophene and octahydroindole moieties. Based on molecular docking studies, IIc was strongly bound to the catalytic and peripheral anionic sites of the protein through hydrophilic, hydrophobic, and π-stacking interactions with Asp74, Trp86, Tyr124, Ser125, Glu202, Ser203, Trp236, Trp286, Phe297, Tyr337, and Tyr341. These interactions also indicated that the multiplicity of the IIc aromatic core significantly favored its activity.


Subject(s)
Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacology , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Amino Acids/chemistry , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Oxindoles/chemistry , Structure-Activity Relationship , Thiophenes/chemistry
18.
Saudi J Biol Sci ; 27(5): 1208-1216, 2020 May.
Article in English | MEDLINE | ID: mdl-32346326

ABSTRACT

To design and discover a new compound can used as a COX with TNF-α and IL-6 inhibitors is highly challenge. A series of spiroindolone-bearing benzofuran moieties were resynthesized from the chalcone-based benzo[b]furan with substituted isatin, and amino acids. The requisite spiroindolone analogues were tested for their potential inhibitory activities against lipid metabolizing enzymes such as cyclooxygenase COX-1, COX-2, and the release of pro-inflammatory cytokines interleukin IL-6, and tumor necrosis factor TNF-α. Among the tested compounds, 5a, 5c, 5h, 5i, 5l, and 5p exhibited COX-1 inhibitor selectively with percent of inhibition 40.81-83.4% and IC50 values ranging from 20.42 µM to 38.24 µM. In addition, all the synthesized target compounds possessed lipopolysaccharide-induced TNF-α, and IL-6 expression with a varying degree of COX-1 inhibition. Compounds 5d, 5e, 5f, 5g, and 5k markedly inhibited TNF-α, and IL-6 release in WI-38 fibroblast cells. Molecular docking of the most effective and highly selective compounds were investigated and shown important binding mechanisms which could affect pro-inflammatory enzymes and cytokines via the inhibition of COX-1, COX-2, IL-6, and TNF-α.

19.
J Enzyme Inhib Med Chem ; 35(1): 692-701, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32156165

ABSTRACT

A new series of thiobarbituric (thiopyrimidine trione) enamine derivatives and its analogues barbituric acid derivatives was synthesised, characterised, and screen for in vitro evaluation of α-glucosidase enzyme inhibition and anti-glycation activity. This series of compounds were found to inhibit α-glucosidase activity in a reversible mixed-type manner with IC50 between 264.07 ± 1.87 and 448.63 ± 2.46 µM. Molecular docking studies indicated that compounds of 3g, 3i, 3j, and 5 are located close to the active site of α-glucosidase, which may cover the active pocket, thereby inhibiting the binding of the substrate to the enzyme. Thiopyrimidine trione derivatives also inhibited the generation of advanced glycation end-products (AGEs), which cause long-term complications in diabetes. While, compounds 3a-k, 5, and 6 showed significant to moderate anti-glycation activity (IC50 = 31.5 ± 0.81 to 554.76 ± 9.1 µM).


Subject(s)
Amines/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Thiobarbiturates/pharmacology , alpha-Glucosidases/metabolism , Amines/chemical synthesis , Amines/chemistry , Dose-Response Relationship, Drug , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Glycosylation/drug effects , Humans , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Thiobarbiturates/chemical synthesis , Thiobarbiturates/chemistry
20.
ChemistryOpen ; 8(10): 1288-1297, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31649838

ABSTRACT

The Michael addition reaction of barbituric acid with chalcones incorporating the indole scaffold was achieved by using a highly efficient bimetallic Iron-palladium catalyst in the presence of acetylacetone (acac). This catalytic approach produced the desired products in a simple operation and low catalyst loading with acceptable yield of the new hybrids. All tested compounds were subjected for biological activity on α-glucosidase and α-amylase. The results revealed that all synthesized compounds exhibited very good activity against both enzymes when compared to positive control (acarbose). Moreover, compound 5o showed the best activity whereas its IC50 (µM) are 13.02+0.01 and 21.71+0.82 for α-glucosidase and α-amylase respectively. Both compounds 5o and 5l exhibited high similarity in binding mode and pose with amylase protein (4UAC). The obtained data may be used for developing potential hypoglycemic agents.

SELECTION OF CITATIONS
SEARCH DETAIL
...