Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Environ Sci Pollut Res Int ; 29(5): 6943-6948, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34467492

ABSTRACT

Serum total and free calcium reflect the status of the body health and disease. Smoking is risk factor for many diseases as cardiovascular, lung, and cancers. The goal of this work is to evaluate the correlation between serum lead, cadmium arsenate resulting from passive smoking, and bone status in females. This study was conducted on two hundred women (age 30-50 years) divided into four groups (each 50). Group I, control, included non-smoking healthy women. Group II included heavy smoker (>20 cigarettes/day). Group III, nonsmoker women with osteoporosis, have many fractures. Group IV, smoking women with osteoporosis, included heavy smokers (>20 cigarettes/day) with osteoporotic women and have many fractures. Data obtained showed that T-score of osteoporotic smokers was -3.5 that indicated reduced bone mineral density (BMD) while serum total and ionized calcium were statistically significant decreased in smokers with or without osteoporosis compared with nonsmokers (p < 0.001). A negative correlation between total and free calcium and cadmium levels in smokers was compared with nonsmokers (r =-0.65). The levels of C-terminal pro-peptide of pro-collagen type I (PICP) and N-terminal pro-peptide of procollagen type I (PINP) were higher in smoker osteoporotic women than nonsmokers. It was concluded that cadmium resulting from smoking may compete with absorption of calcium and reduced its level and BMD and increased incidence of osteoporosis. The elevated PICP and PINP indicated decreased rate of proto collagen I turnover in bone tissue and increased incidence of osteoporosis.


Subject(s)
Metals, Heavy , Osteoporosis, Postmenopausal , Osteoporosis , Adult , Biomarkers , Bone Density , Collagen Type I , Female , Humans , Middle Aged , Smokers
3.
Anal Cell Pathol (Amst) ; 2019: 1598182, 2019.
Article in English | MEDLINE | ID: mdl-31482051

ABSTRACT

Human hepatocellular carcinoma (HCC) is the most common and recurrent type of primary adult liver cancer without any effective therapy. Plant-derived compounds acting as anticancer agents can induce apoptosis by targeting several signaling pathways. Strigolactone (SL) is a novel class of phytohormone, whose analogues have been reported to possess anticancer properties on a panel of human cancer cell lines through inducing cell cycle arrest, destabilizing microtubular integrity, reducing damaged in the DNA repair machinery, and inducing apoptosis. In our previous study, we reported that a novel SL analogue, TIT3, reduces HepG2 cell proliferation, inhibits cell migration, and induces apoptosis. To decipher the mechanisms of TIT3-induced anticancer activity in HepG2, we performed RNA sequencing and the differential expression of genes was analyzed using different tools. RNA-Seq data showed that the genes responsible for microtubule organization such as TUBB, BUB1B, TUBG2, TUBGCP6, TPX2, and MAP7 were significantly downregulated. Several epigenetic modulators such as UHRF1, HDAC7, and DNMT1 were also considerably downregulated, and this effect was associated with significant upregulation of various proapoptotic genes including CASP3, TNF-α, CASP7, and CDKN1A (p21). Likewise, damaged DNA repair genes such as RAD51, RAD52, and DDB2 were also significantly downregulated. This study indicates that TIT3-induced antiproliferative and proapoptotic activities on HCC cells could involve several signaling pathways. Our results suggest that TIT3 might be a promising drug to treat HCC.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Gene Expression Regulation, Neoplastic , Gene Ontology , Lactones/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Hep G2 Cells , Humans , Lactones/chemistry , Lactones/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation/drug effects
4.
Epigenet Insights ; 12: 2516865719839011, 2019.
Article in English | MEDLINE | ID: mdl-31058255

ABSTRACT

The epigenetic silencing of tumor suppressor genes (TSGs) is a common finding in several solid and hematological tumors involving various epigenetic readers and writers leading to enhanced cell proliferation and defective apoptosis. Thymoquinone (TQ), the major biologically active compound of black seed oil, has demonstrated anticancer activities in various tumors by targeting several pathways. However, its effects on the epigenetic code of cancer cells are largely unknown. In the present study, we performed RNA sequencing to investigate the anticancer mechanisms of TQ-treated T-cell acute lymphoblastic leukemia cell line (Jurkat cells) and examined gene expression using different tools. We found that many key epigenetic players, including ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1), DNMT1,3A,3B, G9A, HDAC1,4,9, KDM1B, and KMT2A,B,C,D,E, were downregulated in TQ-treated Jurkat cells. Interestingly, several TSGs, such as DLC1, PPARG, ST7, FOXO6, TET2, CYP1B1, SALL4, and DDIT3, known to be epigenetically silenced in various tumors, including acute leukemia, were upregulated, along with the upregulation of several downstream pro-apoptotic genes, such as RASL11B, RASD1, GNG3, BAD, and BIK. Data obtained from RNA sequencing were confirmed using quantitative reverse transcription polymerase chain reaction (RT-qPCR) in Jurkat cells, as well as in a human breast cancer cell line (MDA-MB-468 cells). We found that the decrease in cell proliferation and in the expression of UHRF1, DNMT1, G9a, and HDAC1 genes in both cancer cell (Jurkat cells and MDA-MB-468 cells) lines depends on the TQ dose. Our results indicate that the use of TQ as an epigenetic drug represents a promising strategy for epigenetic therapy for both solid and blood tumors by targeting both DNA methylation and histone post-translational modifications.

5.
Environ Int ; 126: 153-161, 2019 05.
Article in English | MEDLINE | ID: mdl-30798196

ABSTRACT

Human exposure to phthalates is ubiquitous and has received considerable attention due to their association with adverse health outcomes, including type 2 diabetes mellitus (T2DM). Nevertheless, earlier studies that link phthalate exposure to T2DM yielded ambiguous results. Furthermore, studies that associate phthalate exposure with oxidative stress and then with T2DM are scant. In this diabetic case-control study, urine samples collected from 101 individuals aged 28-68 years from Jeddah, Saudi Arabia, were analyzed to determine 20 phthalate metabolites (PhMs) and seven oxidative stress biomarkers (OSBs). Unconditional logistic regression was used to estimate odds ratios for the association between diabetes and urinary PhMs and OSBs in participants, stratified by age, gender, nationality, smoking status, occupation, and urinary creatinine. Twelve PhMs and five OSBs were found at detection rates above 50%, with geometric mean concentrations of 0.61-100 and 0.35-10.7 ng/mL (1.04-171 and 0.61-18.6 µg/g creatinine), respectively. Almost all exposures were significantly higher in diabetic cases than in controls. The 12 PhMs were positively associated with higher urinary concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-iso-prostaglandin F2α (8-PGF2α). Individuals in the 3rd and/or 4th quartile(s) for urinary concentrations of PhMs and OSBs showed 3.7- and 7.3-fold increase, respectively, in the odds of having diabetes compared with those in the 1st quartile. The rank order of association of PhMs/OSBs with diabetes followed the order of: mEP ≈ mBP > mEHP > mCPP > mECPP ≈ mEOHP ≈ mEHHP ≈ mIBP ≈ mMP > mCMHP ≈ mBzP and 8-OHdG > 8-PGF2α ≈ 15-PGF2α. The relationship between phthalate exposure and risk of developing T2DM was mediated in part by phthalate-induced oxidative stress, especially 8-OHdG. Our study suggests that human exposure to phthalates is associated with increased oxidative stress which mediates the development of T2DM.


Subject(s)
Diabetes Mellitus, Type 2/urine , Environmental Pollutants/urine , Oxidative Stress , Phthalic Acids/urine , 8-Hydroxy-2'-Deoxyguanosine , Adult , Aged , Biomarkers/urine , Case-Control Studies , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/urine , Dinoprost/analogs & derivatives , Dinoprost/urine , Environmental Monitoring , Female , Humans , Male , Middle Aged , Odds Ratio , Saudi Arabia/epidemiology
6.
Epigenet Insights ; 11: 2516865718814543, 2018.
Article in English | MEDLINE | ID: mdl-30515476

ABSTRACT

Natural polyamines such as putrescine, spermidine, and spermine are crucial in the cell proliferation and maintenance in all the eukaryotes. However, the requirement of polyamines in tumor cells is stepped up to maintain tumorigenicity. Many synthetic polyamine analogues have been designed recently to target the polyamine metabolism in tumors to induce apoptosis. N4-Erucoyl spermidine (designed as N4-Eru), a novel acylspermidine derivative, has been shown to exert selective inhibitory effects on both hematological and solid tumors, but its mechanisms of action are unknown. In this study, RNA sequencing was performed to investigate the anticancer mechanisms of N4-Eru-treated T-cell acute lymphoblastic leukemia (ALL) cell line (Jurkat cells), and gene expression was examined through different tools. We could show that many key oncogenes including NDRG1, CACNA1G, TGFBR2, NOTCH1,2,3, UHRF1, DNMT1,3, HDAC1,3, KDM3A, KDM4B, KDM4C, FOS, and SATB1 were downregulated, whereas several tumor suppressor genes such as CDKN2AIPNL, KISS1, DDIT3, TP53I13, PPARG, FOXP1 were upregulated. Data obtained through RNA-Seq further showed that N4-Eru inhibited the NOTCH/Wnt/JAK-STAT axis. This study also indicated that N4-Eru-induced apoptosis could involve several key signaling pathways in cancer. Altogether, our results suggest that N4-Eru is a promising drug to treat ALL.

7.
Oncotarget ; 9(47): 28599-28611, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29983883

ABSTRACT

Down-regulation of UHRF1 (Ubiquitin-like containing PHD and Ring Finger 1) in Jurkat cells, induced by natural anticancer compounds such as thymoquinone, allows re-expression of tumor suppressor genes such as p73 and p16INK4A . In order to decipher the mechanisms of UHRF1 down-regulation, we investigated the kinetic of expression of HAUSP (herpes virus-associated ubiquitin-specific protease), UHRF1, cleaved caspase-3 and p73 in Jurkat cells treated with thymoquinone. We found that thymoquinone induced degradation of UHRF1, correlated with a sharp decrease in HAUSP and an increase in cleaved caspase-3 and p73. UHRF1 concomitantly underwent a rapid ubiquitination in response to thymoquinone and this effect was not observed in the cells expressing mutant UHRF1 RING domain, suggesting that UHRF1 commits an auto-ubiquitination through its RING domain in response to thymoquinone treatment. Exposure of cells to Z-DEVD, an inhibitor of caspase-3 markedly reduced the thymoquinone-induced down-regulation of UHRF1, while proteosomal inhibitor MG132 had no such effect. The present findings indicate that thymoquinone induces in cancer cells a fast UHRF1 auto-ubiquitination through its RING domain associated with HAUSP down-regulation. They further suggest that thymoquinone-induced UHRF1 auto-ubiquitination followed by its degradation is a key event in inducing apoptosis through a proteasome-independent mechanism.

8.
Environ Res ; 166: 544-552, 2018 10.
Article in English | MEDLINE | ID: mdl-29960220

ABSTRACT

A few epidemiologic studies suggest that exposure to bisphenol A (BPA) is associated with type 2 diabetes mellitus (T2DM). However, little is known about association between other phenolic endocrine disrupting chemicals (EDCs) and T2DM. In this case-control study, we measured urinary concentrations of 23 phenolic EDCs in 101 individuals from Jeddah, Saudi Arabia, to examine the association of parabens, antimicrobials, bisphenols, benzophenones and bisphenol A diglycidyl ethers with T2DM. Urine samples were collected from 54 T2DM cases and 47 non-diabetic individuals (controls), aged 28-68 years old, during 2015-2016. Unconditional logistic regression was performed to estimate odd ratios (ORs) for the association between diabetes and EDC exposures after adjusting for confounders including age, gender, nationality, smoking status and occupation. Age from 40 to 59 years (OR 5.56, 95% CI 2.20-14.0) and smoking status (OR 2.92, 95% CI 1.25-6.79) showed significant positive associations with T2DM. After adjusting for potential confounders, we found that T2DM cases had high urinary levels of parabens (i.e., methyl- (MeP), ethyl- (EtP), propyl- (PrP) and 4-hydroxy benzoic acid (4-HB)), bisphenols (i.e., bisphenols A (BPA) and F (BPF)), and benzophenone (i.e., 4-hydroxybenzophenone (4-OH-BP)) relative to the controls. Individuals in the 4th quartile for urinary concentrations of MeP, EtP, PrP, 4-HB and BPF and in the 3rd quartile for BPA and 4-OH-BP showed over a 6-fold increase in the odds of having diabetes compared with those in the first quartile. Overall, our study shows that urinary levels of multiple phenolic EDCs were associated with increased risk for diabetes. Further prospective studies are required to verify these associations.


Subject(s)
Diabetes Mellitus, Type 2/epidemiology , Phenols/urine , Adult , Aged , Benzhydryl Compounds/urine , Case-Control Studies , Diabetes Mellitus, Type 2/urine , Humans , Middle Aged , Prospective Studies , Saudi Arabia/epidemiology
9.
Bioorg Med Chem Lett ; 28(6): 1077-1083, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29456109

ABSTRACT

Hepatocellular carcinoma (HCC) remains one of the leading causes of death worldwide. The complex etiology is attributed to many factors like heredity, cirrhosis, hepatitis infections or the dysregulation of the different molecular pathways. Nevertheless, the current treatment regimens have either severe side effects or tumors gradually acquire resistance upon prolonged use. Thus, developing a new selective treatment for HCC is the need of the hour. Many anticancer agents derived from plants have been evaluated for their cytotoxicity towards many human cancer cell lines. Strigolactones (SLs)-a newly discovered class of phytohormones, play a crucial role in the development of plant-root and shoot. Recently, many synthetic analogues of SLs have demonstrated pro-apoptotic effects on different cancer cell lines like prostate, breast, colon and lung. In this study, we tested synthetic SLs analogues on HCC cell line-HepG2 and evaluated their capability to induce cell proliferation inhibition and apoptosis. Primary WST-1 assays, followed by annexin-V/7AAD staining, demonstrated the anti-proliferative effects. The SLs analogues TIT3 and TIT7 were found to significantly reduce HepG2 cell viability in a dose- and time-dependent manner and induce apoptosis. Interestingly, though TIT3 and TIT7 strongly affected cancer cell proliferation, both compounds showed moderate anti-proliferative effect on normal cells. Further, migration of cancer cells was suppressed upon treatment with TIT3 and TIT7 in a wound healing assay. In summary, these findings suggest that two SLs analogues TIT3 and TIT7 exert selective inhibitory effects on cancer cells most likely through targeting microtubules. SLs analogues could be used in future as potential anti-cancer candidates in chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Lactones/pharmacology , Liver Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Lactones/chemical synthesis , Lactones/chemistry , Liver Neoplasms/pathology , Molecular Structure , Structure-Activity Relationship
10.
J Cell Biochem ; 119(1): 260-268, 2018 01.
Article in English | MEDLINE | ID: mdl-28513976

ABSTRACT

During the early stages of atherosclerosis, monocytes bind and migrate into the endothelial layer, promoting inflammation within the aorta. In order to prevent the development of atherosclerosis, it is critical to inhibit such inflammation. The therapeutic effects of ginger have been investigated in several models of cardiovascular disease. However, although a number of previous studies have focused on specific compounds, the mechanisms of action responsible remain unclear. Here, we investigated five major compounds present in ginger, and observed that gingerenone A exhibited the strongest inhibitory effects against tumor necrosis factor (TNF)-α and lipopolysaccharide (LPS) induced monocyte-endothelial adhesion. Furthermore, gingerenone A significantly suppressed the expression of TNF-α and LPS-induced vascular cell adhesion molecule-1 (VCAM-1) and chemokine (C-C motif) ligand 2 (CCL2), key mediators of the interaction between monocytes, and endothelial cells. Transactivation of nuclear factor-κB (NF-κB), which is a key transcription factor of VCAM-1 and CCL2, was induced by TNF-α and LPS, and inhibited by treatment of gingerenone A. Gingerenone A also inhibited the phosphorylation of NF-κB inhibitor (IκB) α and IκB Kinase. Taken together, these results demonstrate that gingerenone A attenuates TNF-α and LPS-induced monocyte adhesion and the expression of adhesion factors in endothelial cells via the suppression of NF-κB signaling. J. Cell. Biochem. 119: 260-268, 2018. © 2017 Wiley Periodicals, Inc.


Subject(s)
Diarylheptanoids/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , I-kappa B Kinase/metabolism , Monocytes/metabolism , Cell Adhesion/drug effects , Cells, Cultured , Chemokine CCL2/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Humans , Lipopolysaccharides/toxicity , Monocytes/cytology , Phosphorylation/drug effects , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
11.
Bioorg Med Chem Lett ; 27(16): 3678-3682, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28716493

ABSTRACT

Gibberellin (GA) plays versatile roles in the regulation of plant growth and development and therefore is widely used as a regulator in agriculture. We performed a chemical library screening and identified a chemical, named 67D, as a stimulator of seed germination that was suppressed by paclobutrazol (PAC), a GA biosynthesis inhibitor. In vitro binding assays indicated that 67D binds to the GID1 receptor. Further studies on the structure-activity relationship identified a chemical, named chemical 6, that strongly promoted seed germination suppressed by PAC. Chemical 6 was further confirmed to promote the degradation of RGA (for repressor of ga1-3), a DELLA protein, and suppress the expression levels of GA3ox1 in the same manner as GA does. 67D and its analogs are supposed to be agonists of GID1 and are expected to be utilized in agriculture and basic research as an alternative to GA.


Subject(s)
Gibberellins/chemistry , Small Molecule Libraries/chemistry , Arabidopsis/drug effects , Arabidopsis/growth & development , Arabidopsis Proteins/agonists , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Germination/drug effects , Germination/radiation effects , Gibberellins/chemical synthesis , Gibberellins/pharmacology , Light , Plant Growth Regulators/chemistry , Plant Growth Regulators/pharmacology , Receptors, Cell Surface/agonists , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Seeds/drug effects , Seeds/growth & development , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Triazoles/toxicity
12.
Biomed Pharmacother ; 93: 190-201, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28633130

ABSTRACT

The polyamines putrescine, spermidine, and spermine are polycationic, alkyl polyamines which play a significant role in eukaryotic cell proliferation. The polyamine metabolism and function are dysregulated in tumor cells making them an attractive therapeutic target by employing polyamine analogs. These analogs have a high degree of similarity with the structure of polyamines but not with their function. Multidrug resistance is a major factor in the failure of many chemotherapeutic drugs which necessitates further research and exploration of better novel alternatives. In the present study, Twenty-six novel acylspermidine derivatives were synthesized and evaluated for their anti-proliferative and pro-apoptotic activities on human breast cancer cells and T-lymphoblastic leukemia cells. The cell proliferation and apoptosis assays using WST-1 and annexin-V/7AAD staining respectively suggest that Compound 1 (C19H41N3O2), Compound 7(C25H51N3O2) and Compound 8 (C29H59N3O) significantly reduced cancer cell viability in a dose- and time-dependent manner. Interestingly, compounds 7, 8 and 9 had slight or no effect on cell proliferation of non-cancerous cells. These studies speculate that these novel acylspermidine derivatives could be promising candidates in designing an anti-proliferative drug, targeting both solid and blood cancer cells.


Subject(s)
Apoptosis/drug effects , Spermidine/pharmacology , Breast Neoplasms/drug therapy , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Jurkat Cells , Leukemia/drug therapy , MCF-7 Cells , Polyamines/pharmacology , Tumor Cells, Cultured
13.
J Pestic Sci ; 41(3): 79-82, 2016 Aug 20.
Article in English | MEDLINE | ID: mdl-30363077

ABSTRACT

Polyamines are involved not only in fundamental cellular processes such as growth, differentiation, and morphogenesis, but also in various environmental stresses. We demonstrated that spermidine, a polyamine, confers resistance to rice blast accompanied by the up-regulation of marker genes for the salicylic acid-mediated signaling pathway PR1b and PBZ1 and of phytoalexin biosynthesis genes CPS4 and NOMT. This is the first report about the involvement of spermidine in rice disease resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...