Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Acta Vet Hung ; 68(1): 59-64, 2020 03.
Article in English | MEDLINE | ID: mdl-32384074

ABSTRACT

This study was conducted to evaluate the pharmacokinetics of cefquinome in camel calves after a single intramuscular injection in a dose of 2 mg/kg body weight (kg b. w.). Cefquinome concentrations were measured by ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS/MS). A non-compartmental pharmacokinetic model was used to fit the time-concentration curve and estimate the pharmacokinetic parameters. The peak serum concentration (Cmax) was 28.4 µg/mL at the time of maximum concentration (Tmax) of 25 min. The elimination half-life (t1/2) was 17.4 h. The area under the concentration-time curve (AUC0-∞) was 103.7 µg/ml-1h and the mean residence time (MRT0-∞) was 21.3 h. In comparison with other animal species, the pharmacokinetics of cefquinome in Arabian camel calves showed faster absorption from the site of injection and slower elimination. Since cefquinome, as other beta-lactams, is a time-dependent antimicrobial agent, a single dose of 2 mg/kg b. w. might be sufficient against the most sensitive organisms in camel calves owing to its prolonged elimination phase. However, dose readjustment is required for cases needing concentrations above 2 µg/mL for 12 h or above 1 µg/mL for 24 h.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Camelus/metabolism , Cephalosporins/pharmacokinetics , Injections, Intramuscular/veterinary , Animals , Anti-Bacterial Agents/administration & dosage , Cephalosporins/administration & dosage , Male , Pilot Projects
3.
J Med Virol ; 92(9): 1665-1670, 2020 09.
Article in English | MEDLINE | ID: mdl-32330296

ABSTRACT

The Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging virus that causes infection with a potentially fatal outcome. Dendrimers are highly branched molecules that can be added to antiviral preparations to improve their delivery, as well as their intrinsic antiviral activity. Studies on identifying anti-MERS-CoV agents are few. Three types of polyanionic dendrimers comprising the terminal groups sodium carboxylate (generations 1.5, 2.5, 3.5, and 4.5), hydroxyl (generations 2, 3, 4, and 5), and succinamic acid (generations 2, 3, 4, and 5) and polycationic dendrimers containing primary amine (generations 2, 3, 4, and 5) were used to assess their antiviral activity with the MERS-CoV plaque inhibition assay. The hydroxyl polyanionic set showed a 17.36% to 29.75% decrease in MERS-CoV plaque formation. The most potent inhibition of MERS-CoV plaque formation was seen by G(1.5)-16COONa (40.5% inhibition), followed by G(5)-128SA (39.77% inhibition). In contrast, the cationic dendrimers were cytotoxic to Vero cells. Polyanionic dendrimers can be added to antiviral preparations to improve the delivery of antivirals, as well as the intrinsic antiviral activity.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Dendrimers , Middle East Respiratory Syndrome Coronavirus/drug effects , Polyamines/chemistry , Polyamines/pharmacology , Animals , Chlorocebus aethiops , Coronavirus Infections/virology , Humans , Middle East Respiratory Syndrome Coronavirus/physiology , Molecular Structure , Pilot Projects , Vero Cells , Viral Plaque Assay , Virus Replication/drug effects
4.
Life Sci ; 251: 117627, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32251634

ABSTRACT

AIMS: In December 2019, the Coronavirus disease-2019 (COVID-19) virus has emerged in Wuhan, China. In this research, the first resolved COVID-19 crystal structure (main protease) was targeted in a virtual screening study by of FDA approved drugs dataset. In addition, a knowledge gap in relations of COVID-19 with the previously known fatal Coronaviruses (CoVs) epidemics, SARS and MERS CoVs, was covered by investigation of sequence statistics and phylogenetics. MATERIALS AND METHODS: Molecular modeling, virtual screening, docking, sequence comparison statistics and phylogenetics of the COVID-19 main protease were investigated. KEY FINDINGS: COVID-19 Mpro formed a phylogenetic group with SARS CoV that was distant from MERS CoV. The identity% was 96.061 and 51.61 for COVID-19/SARS and COVID-19/MERS CoV sequence comparisons, respectively. The top 20 drugs in the virtual screening studies comprised a broad-spectrum antiviral (ribavirin), anti-hepatitis B virus (telbivudine), two vitamins (vitamin B12 and nicotinamide) and other miscellaneous systemically acting drugs. Of special interest, ribavirin had been used in treating cases of SARS CoV. SIGNIFICANCE: The present study provided a comprehensive targeting of the first resolved COVID+19 structure of Mpro and found a suitable save drugs for repurposing against the viral Mpro. Ribavirin, telbivudine, vitamin B12 and nicotinamide can be combined and used for COVID treatment. This initiative relocates already marketed and approved safe drugs for potential use in COVID-treatment.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/enzymology , Cysteine Endopeptidases/chemistry , Drug Evaluation, Preclinical , Drug Repositioning , Molecular Docking Simulation , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/chemistry , Amino Acid Sequence , Antiviral Agents/pharmacology , Binding Sites , Coronavirus 3C Proteases , Curcumin/chemistry , Curcumin/pharmacology , Drug Approval , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Middle East Respiratory Syndrome Coronavirus/enzymology , Models, Molecular , Protease Inhibitors/pharmacology , Severe acute respiratory syndrome-related coronavirus/enzymology , SARS-CoV-2 , Sequence Alignment , United States , United States Food and Drug Administration
5.
Biomol Ther (Seoul) ; 28(4): 311-319, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32126736

ABSTRACT

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a newly emerging viral disease with fatal outcomes. However, no MERS-CoV-specific treatment is commercially available. Given the absence of previous structure-based drug discovery studies targeting MERS-CoV fusion proteins, this set of compounds is considered the first generation of MERS-CoV small molecule fusion inhibitors. After a virtual screening campaign of 1.56 million compounds followed by cell-cell fusion assay and MERS-CoV plaques inhibition assay, three new compounds were identified. Compound numbers 22, 73, and 74 showed IC50 values of 12.6, 21.8, and 11.12 µM, respectively, and were most effective at the onset of spike-receptor interactions. The compounds exhibited safe profiles against Human embryonic kidney cells 293 at a concentration of 20 µM with no observed toxicity in Vero cells at 10 µM. The experimental results are accompanied with predicted favorable pharmacokinetic descriptors and drug-likeness parameters. In conclusion, this study provides the first generation of MERS-CoV fusion inhibitors with potencies in the low micromolar range.

6.
J Med Virol ; 92(6): 660-666, 2020 06.
Article in English | MEDLINE | ID: mdl-32159237

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging disease with fatal outcomes. In this study, a fundamental knowledge gap question is to be resolved by evaluating the differences in biological and pathogenic aspects of SARS-CoV-2 and the changes in SARS-CoV-2 in comparison with the two prior major COV epidemics, SARS and Middle East respiratory syndrome (MERS) coronaviruses. METHODS: The genome composition, nucleotide analysis, codon usage indices, relative synonymous codons usage, and effective number of codons (ENc) were analyzed in the four structural genes; Spike (S), Envelope (E), membrane (M), and Nucleocapsid (N) genes, and two of the most important nonstructural genes comprising RNA-dependent RNA polymerase and main protease (Mpro) of SARS-CoV-2, Beta-CoV from pangolins, bat SARS, MERS, and SARS CoVs. RESULTS: SARS-CoV-2 prefers pyrimidine rich codons to purines. Most high-frequency codons were ending with A or T, while the low frequency and rare codons were ending with G or C. SARS-CoV-2 structural proteins showed 5 to 20 lower ENc values, compared with SARS, bat SARS, and MERS CoVs. This implies higher codon bias and higher gene expression efficiency of SARS-CoV-2 structural proteins. SARS-CoV-2 encoded the highest number of over-biased and negatively biased codons. Pangolin Beta-CoV showed little differences with SARS-CoV-2 ENc values, compared with SARS, bat SARS, and MERS CoV. CONCLUSION: Extreme bias and lower ENc values of SARS-CoV-2, especially in Spike, Envelope, and Mpro genes, are suggestive for higher gene expression efficiency, compared with SARS, bat SARS, and MERS CoVs.


Subject(s)
Betacoronavirus/genetics , Cysteine Endopeptidases/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , Nucleocapsid Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics , Animals , Base Sequence , Betacoronavirus/classification , Betacoronavirus/pathogenicity , COVID-19 , Chiroptera/microbiology , Codon Usage , Computational Biology , Coronavirus 3C Proteases , Coronavirus Envelope Proteins , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Cysteine Endopeptidases/metabolism , Eutheria/microbiology , Gene Expression , Humans , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Nucleocapsid Proteins/metabolism , Pandemics , Phosphoproteins , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , RNA-Dependent RNA Polymerase/metabolism , Severe acute respiratory syndrome-related coronavirus/classification , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Sequence Homology, Nucleic Acid , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/transmission , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/metabolism , Viral Nonstructural Proteins/metabolism
7.
J Virol Methods ; 277: 113806, 2020 03.
Article in English | MEDLINE | ID: mdl-31911390

ABSTRACT

The nucleocapsid (N) protein of a coronavirus plays a crucial role in virus assembly and in its RNA transcription. It is important to characterize a virus at the nucleotide level to discover the virus's genomic sequence variations and similarities relative to other viruses that could have an impact on the functions of its genes and proteins. This entails a comprehensive and comparative analysis of the viral genomes of interest for preferred nucleotides, codon bias, nucleotide changes at the 3rd position (NT3s), synonymous codon usage and relative synonymous codon usage. In this study, the variations in the N proteins among 13 different coronaviruses (CoVs) were analysed at the nucleotide and amino acid levels in an attempt to reveal how these viruses adapt to their hosts relative to their preferred codon usage in the N genes. The results revealed that, overall, eighteen amino acids had different preferred codons and eight of these were over-biased. The N genes had a higher AT% over GC% and the values of their effective number of codons ranged from 40.43 to 53.85, indicating a slight codon bias. Neutrality plots and correlation analyses showed a very high level of GC3s/GC correlation in porcine epidemic diarrhea CoV (pedCoV), followed by Middle East respiratory syndrome-CoV (MERS CoV), porcine delta CoV (dCoV), bat CoV (bCoV) and feline CoV (fCoV) with r values 0.81, 0.68, -0.47, 0.98 and 0.58, respectively. These data implied a high rate of evolution of the CoV genomes and a strong influence of mutation on evolutionary selection in the CoV N genes. This type of genetic analysis would be useful for evaluating a virus's host adaptation, evolution and is thus of value to vaccine design strategies.


Subject(s)
Codon Usage , Coronavirus/genetics , Evolution, Molecular , Genome, Viral , Nucleocapsid Proteins/genetics , Viral Vaccines , Animals , Humans , Mutation , Nucleotides/analysis , Selection, Genetic
8.
Trop Anim Health Prod ; 52(2): 887-891, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31696417

ABSTRACT

Cefotaxime is a third-generation broad-spectrum cephalosporin acting on a wide range of Gram-positive and Gram-negative bacteria. In this work, the pharmacokinetics of cefotaxime were determined in dromedary camel calves by single intravenous injection of 10 mg/kg b.w. Cefotaxime levels were estimated by ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Cefotaxime pharmacokinetics in camel calves obeyed three-compartment kinetics model. There was a central compartment and two peripheral, one shallow and one deep compartment. The shallow compartment equilibrates very rapidly with distribution half-life (t1/2α) of 0.6 min, while the deep compartment has large distribution half-life (t1/2ß) of 42 min indicating slower uptake of cefotaxime. The elimination rate constant (γ = 0.04 h-1) and elimination half-life (t1/2 γ) = 15.46 h indicating slow elimination. In comparison with other animals, cefotaxime pharmacokinetics in camel calves showed potential wide distribution in multi-compartment, lower elimination constant, lower clearance and higher volume of distribution at steady state. This indicates substantial differences in cefotaxime pharmacokinetics in camel calves with a very characteristic ultra-rapid distribution into three-compartment and slow elimination.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Camelus/metabolism , Cefotaxime/pharmacokinetics , Animals , Camelus/growth & development , Half-Life , Injections, Intravenous/veterinary , Kinetics
9.
PLoS One ; 14(2): e0212065, 2019.
Article in English | MEDLINE | ID: mdl-30730992

ABSTRACT

Plasmodium falciparum thymidylate kinase (PfTMK) showed structural and catalytic distinctions from the host enzyme rendering it a hopeful antiprotozoal drug target. Despite the comprehensive enzymologic, structural, inhibitory and chemical synthesis approaches targeting this enzyme, the elucidation of the exact mechanism underlying the recognition of the atypical purine substrates remains to be determined. In this study, molecular dynamics (MD) simulation of a broad range of substrates and inhibitors as well as the inhibitory properties of deoxyguanosine (dG) derivatives were used to assess the PfTMK substructure molecular rearrangements. The estimated changes during the favourable binding of high affinity substrate (TMP) include lower interaction with P-loop, free residue fluctuations of the lid domain and the average RMSD value. The RMSD of TMP complex was higher and more rapidly stabilized than the dGMP complex. The lid domain flexibility is severely affected by dGMP and ß-thymidine derivatives, while being partially fluctuating with other thymidine derivatives. The TMK-purine (dGMP) complex was slowly and gradually stabilized with lower over all structure flexibility and residue fluctuations especially at the lid domain, which closes the active site during its catalytic state. Thymidine derivatives allow structure flexibility of the lid domain being highly fluctuating in α- and ß-thymidine derivatives and TMP. dG derivatives remains less efficient than thymidine derivatives in inhibiting TMK. The variations in the structural dynamics of the P-loop and lid domain in response to TMP or dGMP might favour thymidine-based compounds. The provided MD simulation strategy can be used for predicating structural changes in PfTMK during lead optimization.


Subject(s)
Molecular Dynamics Simulation , Nucleoside-Phosphate Kinase/metabolism , Plasmodium falciparum/enzymology , Protozoan Proteins/metabolism , Binding Sites , Deoxyguanosine/chemistry , Deoxyguanosine/metabolism , Hydrogen Bonding , Ligands , Nucleoside-Phosphate Kinase/antagonists & inhibitors , Nucleoside-Phosphate Kinase/chemistry , Protein Structure, Tertiary , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...