Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Med (Lausanne) ; 10: 1164305, 2023.
Article in English | MEDLINE | ID: mdl-37215724

ABSTRACT

Background: Inflammatory bowel disease (IBD) is a chronic autoimmune disorder characterized by severe inflammation and mucosal destruction of the intestine. The specific, complex molecular processes underlying IBD pathogenesis are not well understood. Therefore, this study is aimed at identifying and uncovering the role of key genetic factors in IBD. Method: The whole exome sequences (WESs) of three consanguineous Saudi families having many siblings with IBD were analyzed to discover the causal genetic defect. Then, we used a combination of artificial intelligence approaches, such as functional enrichment analysis using immune pathways and a set of computational functional validation tools for gene expression, immune cell expression analyses, phenotype aggregation, and the system biology of innate immunity, to highlight potential IBD genes that play an important role in its pathobiology. Results: Our findings have shown a causal group of extremely rare variants in the LILRB1 (Q53L, Y99N, W351G, D365A, and Q376H) and PRSS3 (F4L and V25I) genes in IBD-affected siblings. Findings from amino acids in conserved domains, tertiary-level structural deviations, and stability analysis have confirmed that these variants have a negative impact on structural features in the corresponding proteins. Intensive computational structural analysis shows that both genes have very high expression in the gastrointestinal tract and immune organs and are involved in a variety of innate immune system pathways. Since the innate immune system detects microbial infections, any defect in this system could lead to immune functional impairment contributing to IBD. Conclusion: The present study proposes a novel strategy for unraveling the complex genetic architecture of IBD by integrating WES data of familial cases, with computational analysis.

2.
Front Pediatr ; 10: 895074, 2022.
Article in English | MEDLINE | ID: mdl-35692981

ABSTRACT

Background: Molecular diagnosis of early onset inflammatory bowel disease (IBD) is very important for adopting suitable treatment strategies. Owing to the sparse data available, this study aims to identify the molecular basis of early onset IBD in Arab patients. Methods: A consanguineous Arab family with monozygotic twins presenting early onset IBD was screened by whole exome sequencing (WES). The variants functional characterization was performed by a series of computational biology methods. The IBD variants were further screened in in-house whole exome data of 100 Saudi cohorts ensure their rare prevalence in the population. Results: Genetic screening has identified the digenic autosomal recessive mode of inheritance of ITGAV (G58V) and FN1 (G313V) variants in IBD twins with early onset IBD. Findings from pathogenicity predictions, stability and molecular dynamics have confirmed the deleterious nature of both variants on structural features of the corresponding proteins. Functional biology data suggested that both genes show abundant expression in gastrointestinal tract and immune organs, involved in immune cell restriction, regulation of different immune related pathways. Data from knockout mouse models for ITGAV gene has revealed that the dysregulated expression of this gene impacts intestinal immune homeostasis. The defective ITGAV and FN1 involved in integrin pathway, are likely to induce intestinal inflammation by disturbing immune homeostasis. Conclusions: Our findings provide novel insights into the molecular etiology of pediatric onset IBD and may likely pave way in developing genomic medicine.

3.
Saudi J Biol Sci ; 27(1): 324-334, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31889854

ABSTRACT

Mitochondrial disorders (MIDs) shows overlapping clinical presentations owing to the genetic and metabolic defects of mitochondria. However, specific relationship between inherited mutations in nuclear encoded mitochondrial proteins and their functional impacts in terms of metabolic defects in patients is not yet well explored. Therefore, using high throughput whole exome sequencing (WES), we screened a chronic kidney disease (CKD) and sensorineural hearing loss (SNHL) patient, and her family members to ascertain the mode of inheritance of the mutation, and healthy population controls to establish its rare frequency. The impact of mutation on biophysical characteristics of the protein was further studied by mapping it in 3D structure. Furthermore, LC-MS tandem mass spectrophotometry based untargeted metabolomic profiling was done to study the fluctuations in plasma metabolites relevant to disease causative mutations and kidney damage. We identified a very rare homozygous c.631G > A (p.Val211Met) pathogenic mutation in RMND1 gene in the proband, which is inherited in an autosomal recessive fashion. This gene is involved in the mitochondrial translational pathways and contribute in mitochondrial energy metabolism. The p.Val211Met mutation is found to disturb the structural orientation (RMSD is -2.95 Å) and stability (ΔΔG is -0.552 Kcal/mol) of the RMND1 protein. Plasma metabolomics analysis revealed the aberrant accumulation of metabolites connected to lipid and amino acid metabolism pathways. Of these metabolites, pathway networking has discovered ceramide, a metabolite of sphingolipids, which plays a role in different signaling cascades including mitochondrial membrane biosynthesis, is highly elevated in this patient. This study suggests that genetic defects in RMND1 gene alters the mitochondrial energy metabolism leading to the accumulation of ceramide, and subsequently promote dysregulated apoptosis and tissue necrosis in kidneys.

SELECTION OF CITATIONS
SEARCH DETAIL