Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 14: 1229088, 2023.
Article in English | MEDLINE | ID: mdl-38155709

ABSTRACT

Fabry disease (FD) is a rare genetic condition caused by mutations in the GLA gene, located on the X chromosome in the RPL36-HNRNPH2 readthrough genomic region. This gene produces an enzyme called alpha-galactosidase A (α-Gal A). When the enzyme does not function properly due to the mutations, it causes harmful substances called globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) to build up in the body's lysosomes. This accumulation can damage the kidneys, heart, eyes, and nervous system. Recent studies have shown that the RPL36A-HNRNPH2 readthrough loci, which include RPL36A and HNRNPH2 genes, as well as the regulatory sequence known as the GLA-HNRNPH2 bidirectional promoter, may also play a role in FD. However, the involvement of enhancer RNAs (eRNAs) in FD is still poorly understood despite their known role in various diseases. To investigate this further, we studied an RPL36A enhancer called GH0XJ101390 and showed its genomic setting in the RPL36-HNRNPH2 readthrough region; the eRNA is rich in Homotypic Clusters of TFBSs (HCTs) type and hosts a CpG Island (CGI). To test the functional correlation further with GLA, RPL36A, and HNRNPH2, we used siRNAs to knock down GH0XJ101390 in human kidney embryonic cells 293T. The results showed a significant decrease in RPL36A and GLA expression and a non-significant decrease in HNRNPH2 expression. These findings could have important implications for understanding the regulatory mechanisms of GH0XJ101390 and its potential role in FD. A better understanding of these mechanisms may improve diagnostic and therapeutic methods for FD, which could ultimately benefit patients with this rare condition.

2.
Biomed Rep ; 17(2): 71, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35910704

ABSTRACT

Fabry disease (FD) is a rare inherited disease characterized by a wide range of symptoms attributed to GLA mutations resulting in defective α-galactosidase A (α-Gal A) and accumulation of glycosphingolipids. The GLA locus is paired in a divergent manner with the heterogeneous nuclear ribonucleoprotein HNRNPH2 locus mapped in the RPL36A-HNRNPH2 readthrough locus. As a follow-up to our recent finding of the co-regulation of GLA and HNRNPH2 via a bidirectional promoter (BDP) in normal kidney and skin cells, the potential accumulative influence of BDP methylation and GLA mutation on the severity of FD in patients from the same family, two males and two females carrying a GLA deletion mutation, c.1033_1034delTC (p.Ser345Argfs) was addressed in the present study. The molecular analyses of the FD patients compared with the control revealed that the expression of GLA was significantly low (P<0.05), and HNRNPH2 showed a tendency of low expression (P=0.1) when BDP methylation was elevated in FD patients, compared with low BDP methylation and high GLA expression (P<0.05), and a high trend of HNRNPH2 expression in normal individuals. The accumulative effects of the mutation and BDP methylation with the severity of the disease were observed in three patients. One male FD patient, a member of the FD family diagnosed with progressive loss of kidney function, hypertension, and eventually a stroke, and the lowest level of α-Gal A enzyme activity showed the highest BDP DNA methylation level. It is concluded that the DNA methylation of GLA-HNRNPH2 BDP may serve a role in diagnosing and treating FD.

3.
Exp Ther Med ; 21(2): 154, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33456521

ABSTRACT

Fabry disease (FD) is a rare hereditary disorder characterized by a wide range of symptoms caused by a variety of mutations in the galactosidase α (GLA) gene. The heterogeneous nuclear ribonucleoprotein (HNRNPH2) gene is divergently paired with GLA on chromosome X and is thought to be implicated in FD. However, insufficient information is available on the regulatory mechanisms associated with the expression of HNRNPH2 and the GLA loci. Therefore, the current study performed bioinformatics analyses to assess the GLA and HNRNPH2 loci and investigate the regulatory mechanisms involved in the expression of each gene. The regulatory mechanisms underlying GLA and HNRNPH2 were revealed. The expression of each gene was associated with a bidirectional promoter (BDP) characterized by the absence of TATA box motifs and the presence of specific transcription factor binding sites (TFBSs) and a CpG Island (CGI). The nuclear run-on transcription assay confirmed the activity of BDP GLA and HNRNPH2 transcription in 293T. Methylation-specific PCR analysis demonstrated a statistically significant variation in the DNA methylation pattern of BDP in several cell lines, including human adult epidermal keratinocytes (AEKs), human renal glomerular endothelial cells, human renal epithelial cells and 293T cells. The highest observed significance was demonstrated in AEKs (P<0.05). The results of the chromatin-immunoprecipitation assay using 293T cells identified specific TFBS motifs for Yin Yang 1 and nuclear respiratory factor 1 transcription factors in BDPs. The National Center for Biotechnology Information-single nucleotide polymorphism database revealed pathogenic variants in the BDP sequence. Additionally, a previously reported variant associated with a severe heterozygous female case of GLA FD was mapped in BDP. The results of the present study suggested that the expression of the divergent paired loci, GLA and HNRNPH2, were controlled by BDP. Mutations in BDP may also serve a role in FD and may explain clinical disease diversity.

4.
J Clin Med ; 6(9)2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28925931

ABSTRACT

Trimethylamine-N-oxide (TMAO) is a product of dietary, gut microbiome, and tissues metabolism. Elevated blood TMAO levels are associated with heart attack, stroke and chronic kidney disease (CKD). The purpose of our study was to investigate the gut microbiota associated with trimethylamine (TMA) production, the precursor of TMAO, and the serum levels of TMAO and inflammatory biomarkers associated with type 2 diabetes mellitus (T2DM) and CKD. Twenty adults with T2DM and advanced CKD and 20 healthy adults participated in the study. Analyses included anthropometric and metabolic parameters, characterization of TMA producing gut microbiota, and concentrations of TMAO, lipopolysaccharides (LPS) endotoxin, zonulin (Zo) gut permeability marker, and serum inflammatory and endothelial dysfunction biomarkers. Diversity of the gut microbiota was identified by amplification of V3-V4 regions of the 16S ribosomal RNA genes and DNA sequencing. TMAO was quantified by Mass Spectrometry and serum biomarkers by ELISA. The significance of measurements justified by statistical analysis. The gut microbiome in T2DM-CKD patients exhibited a higher incidence of TMA-producing bacteria than control, p < 0.05. The serum levels of TMAO in T2DM-CKD patients were significantly higher than controls, p < 0.05. TMAO showed a positive correlation with Zo and LPS, inflammatory and endothelial dysfunction biomarkers. A positive correlation was observed between Zo and LPS in T2DM-CKD subjects. An increased abundance of TMA-producing bacteria in the gut microbiota of T2DM-CKD patients together with excessive TMAO and increased gut permeability might impact their risk for cardiovascular disease through elevation of chronic inflammation and endothelial dysfunction.

SELECTION OF CITATIONS
SEARCH DETAIL
...