Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(8)2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37629596

ABSTRACT

Globally, breast cancer (BC), the second-biggest cause of cancer death, occurs due to unregulated cell proliferation leading to metastasis to other parts of the human organ. Recently, the exploration of naturally derived anticancer agents has become popular due to their fewer adverse effects. Among the natural products, soybean is a very well-known legume that contains important bioactive compounds such as diadazine, glycetin, genistein, and genistin. Therefore, keeping its therapeutic potential in mind, multi-targeted molecular docking and simulation studies were conducted to explore the potential role of soybean-derived isoflavone genistin against several breast cancer-signaling proteins (ER-alpha, ER-Beta, collapsin response mediator protein 2, CA 15-3, human epidermal growth factor receptor 2). A comparative study of the genistin-protein docked complex was explored to investigate its potential role in BC. The molecular binding energy (∆G) of the docked complex was calculated along with ADMET properties. The molecular docking score of genistin with ubiquitin-like protein activation complex-a type of Cancer Antigen (CA) 15.3 (PDB ID-2NVU, 5T6P, and 1YX8) showed the highest binding energy, ranging from -9.5 to -7.0 Kcal/mol, respectively. Furthermore, the highest docking scores of the complex were additionally put through molecular dynamics (MD) simulation analysis. MD simulations of the selected complex were performed at 100 ns to study the stability of the genistin-ubiquitin-like protein CA 15.3 complex, which appeared to be quite stable. Additionally, the ADMET study demonstrated that genistin complies with all drug-likeness standards, including Lipinski, Egan, Veber, Ghose, and Muegge. Therefore, based on the results, genistin can be considered as one of the potential drugs for the management and treatment of BC. In addition, the obtained results suggest that genistin could pave the way for new drug discovery to manage breast cancer and has potential in the development of nutraceuticals.

2.
Antibiotics (Basel) ; 11(7)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35884107

ABSTRACT

Worldwide, the primary problem today is the proliferation of cancer and secondary bacterial infections caused by biofilms, as they are the principal causes of death due to the lack of effective drugs. A great deal of biological activities of silver nanoparticles (AgNPs) have made them a brilliant choice for the development of new drugs in recent years. The present study was conducted to evaluate the anticancer, antibacterial, anti-QS, and antibiofilm effects of AgNPs synthesized from Eruca sativa (E. sativa) leaf extract. The ultraviolet-visible (UV-Vis) spectra showed a peak of surface plasmon resonance at 424 nm λmax, which corresponded to AgNP formation. The Fourier transform infrared spectroscopy (FT-IR) confirmed that biological moieties are involved for the development of AgNPs. Moreover, transmission electron microscopy (TEM) analyses confirmed the spherical shape and uniform size (8.11 to 15 nm) of the AgNPs. In human lung cancer cells (A549), the anticancer potential of AgNPs was examined by the MTT [3-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, scratch assay, and invasion assay. The results indicated that AgNPs inhibit the migration of A549 cells. The synthesized AgNPs showed MIC values of 12.5 µg/mL against Chromobacterium violaceum (C. violaceum) and 25 µg/mL against Pseudomonas aeruginosa (P. aeruginosa), which demonstrated their antibacterial abilities. Biological compounds that disable the QS system are being investigated as potential strategies for preventing bacterial infections. Thus, we analyzed the potential effectiveness of synthesized AgNPs in inhibiting QS-regulated virulence factors and biofilm formation in both strains of bacteria. In C. violaceum, the synthesized AgNPs significantly inhibited both violacein (85.18% at 1/2 × MIC) and acyl homoserine lactone (78.76% at 1/2 × MIC). QS inhibitory activity was also demonstrated in P. aeruginosa at a sub-MIC concentration (1/2 × MIC) by a reduction in pyocyanin activity (68.83%), total protease (68.50%), LasA activity (63.91%), and LasB activity (56.40%). Additionally, the exopolysaccharide production was significantly reduced in both C. violaceum (65.79% at 1/2 × MIC) and P. aeruginosa (57.65% at 1/2 × MIC). The formation of biofilm was also significantly inhibited at 1/2 × MIC in C. violaceum (76.49%) and in P. aeruginosa (65.31%). Moreover, a GC-MS analysis confirmed the presence of different classes of bioactive phytochemical constituents present in the leaf extract of E. sativa. On the basis of our results, we conclude that biologically synthesized AgNPs showed numerous multifunctional properties and have the potential to be used against human cancer and bacterial biofilm-related infections.

3.
Plants (Basel) ; 11(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35270080

ABSTRACT

Bacterial cells have the ability to form biofilm onto the surfaces of food matrixes and on food processing equipment, leading to a source of food contamination posing serious health implications. Therefore, our study aimed to determine the effect of Eruca sativa Miller (E. sativa) crude extract against biofilms of food-borne bacteria along with in silico approaches to investigate adhesion proteins responsible for biofilm activity against the identified phytochemicals. The antibacterial potential of crude extract was evaluated using agar well diffusion technique and combinations of light and scanning electron microscopy to assess the efficacy of crude extract against the developed biofilms. Our results showed that crude extract of E. sativa was active against all tested food-borne bacteria, exhibiting a rapid kinetics of killing bacteria in a time-dependent manner. MIC and MBC values of E. sativa crude extract were found to be ranging from 125 to 500 µg/mL and 250 to 1000 µg/mL respectively. Furthermore, inhibition of developed biofilm by E sativa was found to be ranging from 58.68% to 73.45% for all the tested strains. The crude extract also reduced the viability of bacterial cells within biofilms and amount of EPS (ranging 59.73-82.77%) in the biofilm matrix. Additionally, the microscopic images also revealed significant disruption in the structure of biofilms. A molecular docking analysis of E. sativa phytochemicals showed interaction with active site of adhesion proteins Sortase A, EspA, OprD, and type IV b pilin of S. aureus, E. coli, P. aeruginosa, and S. enterica ser. typhi, respectively. Thus, our findings represent the first demonstration of E. sativa crude extract's bioactivity and potency against food-borne bacteria in their planktonic forms, as well as against the developed biofilms. Therefore, a possible mechanistic approach for inhibition of biofilm via targeting adhesion proteins can be explored further to target biofilm producing food-borne bacterial pathogens.

4.
Molecules ; 27(4)2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35209197

ABSTRACT

Eruca sativa Mill. (E. sativa) leaves recently grabbed the attention of scientific communities around the world due to its potent bioactivity. Therefore, the present study investigates the metabolite profiling of the ethanolic crude extract of E. sativa leaves using high resolution-liquid chromatography-mass spectrometry (HR-LC/MS), including antibacterial, antioxidant and anticancer potential against human colorectal carcinoma cell lines. In addition, computer-aided analysis was performed for determining the pharmacokinetic properties and toxicity prediction of the identified compounds. Our results show that E. sativa contains several bioactive compounds, such as vitamins, fatty acids, alkaloids, flavonoids, terpenoids and phenols. Furthermore, the antibacterial assay of E. sativa extract showed inhibitory effects of the tested pathogenic bacterial strains. Moreover, the antioxidant activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) were found to be IC50 = 66.16 µg/mL and 76.05 µg/mL, respectively. E. sativa also showed promising anticancer activity against both the colorectal cancer cells HCT-116 (IC50 = 64.91 µg/mL) and Caco-2 (IC50 = 83.98 µg/mL) in a dose/time dependent manner. The phytoconstituents identified showed promising pharmacokinetics properties, representing a valuable source for drug or nutraceutical development. These investigations will lead to the further exploration as well as development of E. sativa-based nutraceutical products.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents, Phytogenic , Antioxidants , Colorectal Neoplasms/drug therapy , Computer Simulation , Phytochemicals , Plant Extracts , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Caco-2 Cells , Colorectal Neoplasms/metabolism , HCT116 Cells , Humans , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology
5.
Molecules ; 26(12)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204669

ABSTRACT

Abelmoschus esculentus (Okra) is an important vegetable crop, widely cultivated around the world due to its high nutritional significance along with several health benefits. Different parts of okra including its mucilage have been currently studied for its role in various therapeutic applications. Therefore, we aimed to develop and characterize the okra mucilage biopolymer (OMB) for its physicochemical properties as well as to evaluate its in vitro antidiabetic activity. The characterization of OMB using Fourier-transform infrared spectroscopy (FT-IR) revealed that okra mucilage containing polysaccharides lies in the bandwidth of 3279 and 1030 cm-1, which constitutes the fingerprint region of the spectrum. In addition, physicochemical parameters such as percentage yield, percentage solubility, and swelling index were found to be 2.66%, 96.9%, and 5, respectively. A mineral analysis of newly developed biopolymers showed a substantial amount of calcium (412 mg/100 g), potassium (418 mg/100 g), phosphorus (60 mg/100 g), iron (47 mg/100 g), zinc (16 mg/100 g), and sodium (9 mg/100 g). The significant antidiabetic potential of OMB was demonstrated using α-amylase and α-glucosidase enzyme inhibitory assay. Further investigations are required to explore the newly developed biopolymer for its toxicity, efficacy, and its possible utilization in food, nutraceutical, as well as pharmaceutical industries.


Subject(s)
Abelmoschus/chemistry , Plant Mucilage/chemistry , Plant Mucilage/isolation & purification , Abelmoschus/metabolism , Antioxidants/chemistry , Biopolymers/analysis , Biopolymers/chemistry , Dietary Supplements , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/metabolism , Plant Extracts/pharmacology , Polysaccharides/chemistry , Spectroscopy, Fourier Transform Infrared/methods , alpha-Amylases/chemistry , alpha-Glucosidases/chemistry
6.
J Food Sci Technol ; 54(12): 3948-3958, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29085137

ABSTRACT

This study was designed to evaluate antimicrobial activity and chemical composition of four different plant essential oils i.e. Ginger oil (GiO), Black seed oil (BSO), Oregano oil (OO) and Rose oil (RO) against different bacterial and fungal strains. Anti-microbial activities of selected essential oils were determined by the microbiological technique using Agar well diffusion assay. After in vitro study, most of the essential oils showed antimicrobial activity against all the selected pathogens. Among all the tested oils, GiO showed strong antimicrobial activity. GiO showed highest antimicrobial activity against Shigella (119.79%), Enteococcus hirae (110.61%) and Escherichia coli (106.02%), when compared with the tetracycline (50 µg/mL) activity. However, Antifungal activity of GiO was found to be present against Candida albicans and Aspergilluas flavus, when compared with clotrimazole (50 µg/mL) activity. Among all the selected bacteria, BSO showed maximum antimicrobial activity against the E. coli followed by Citrobacter freundii. Moreover, BSO had highest zone of inhibition against the C. ablicans (33.58%). OO indicated that, Shigella had the highest sensitivity (12.6 ± 0.58, 131.25%), followed by E. hirae (19.1 ± 0.61, 96.46%) and Salmonella typhi (15.2 ± 0.27, 83.06%) when compared with tetracycline activity. OO showed poor sensitivity against all the selected fungal strains. Furthermore, Gas Chromatography analysis revealed that, Gingerol (10.86%) was the chief chemical constituents found in GiO followed by α-Sesquiphellandrene (6.29%), Zingiberene (5.88%). While, BSO, OO and RO had higher percentage of p-Cymene (6.90%), Carvacrol (15.87%) and Citronellol (8.07%) respectively. The results exhibited that the essential oils used for this study was the richest source for antimicrobial activity which indicates the presence of broad spectrum antimicrobial compounds in these essential oils. Hence, essential oils and their components can be recommended for therapeutic purposes as source of an alternative medicine.

7.
Med Hypotheses ; 100: 78-81, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28236853

ABSTRACT

The 20th century observation of increasing comprehensive load of cancer, advanced cancer prevention strategies, creative hypotheses and control procedures by research communities are being traversed and stimulated in multiple facets. Inference of genetically modified non-pathogenic and natural bacterial species as potential anti-tumor agents is one such original perspective. Live, genetically modified non-pathogenic or attenuated bacterial species are able to form biofilms by multiplying selectively or non-selectively on cancer cells, which will lead to metastasis disruption. However, the appearance of gene-directed prodrug therapy and recombinant DNA technology has invigorated the notice in range of applications employing bacteria and bacterial therapy and have been carried out. The most possible and promising upcoming strategies are bacteria mediated cancer treatment. Significant efficacy in pre-clinical studies have been demonstrated and some are presently under clinical investigation. The theorem is that cancer metastasis can either be blunt by opponent bacterial biofilm infection or serve as model vectors for delivering therapeutic proteins to tumors or generation of the new phenotypes during the SOS reaction incite by anticancer drugs.


Subject(s)
Bacteria/growth & development , Biofilms , Neoplasm Metastasis , Neoplasms/therapy , Animals , Antineoplastic Agents/therapeutic use , Genetic Therapy/methods , Humans , Immunotherapy , Models, Theoretical , Phenotype , Prodrugs/therapeutic use
8.
Acta Parasitol ; 61(1): 113-8, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26751881

ABSTRACT

Lymphatic filariasis (LF) is a chronic disease and is caused by the parasites Wuchereria bancrofti (W. bancrofti), Brugia malayi (B. malayi) and Brugia timori (B. timori). In the present study, Setaria cervi (S. cervi), a bovine filarial parasite has been used. Previously, it has been reported that the S. cervi shares some common proteins and antigenic determinants with that of human filarial parasite. The larval stages of filarial species usually cannot be identified by classical morphology. Hence, molecular characterization allows the identification of the parasites throughout all their developmental stages. The genomic DNA of S. cervi adult were isolated and estimated spectrophotometrically for the quantitative presence of DNA content. Screening of DNA sequences from filarial DNA GenBank and Expressed Sequence Tags (EST's) were performed for homologous sequences and then multiple sequence alignment was executed. The conserved sequences from multiple sequence alignment were used for In Silico primer designing. The successfully designed primers were used further in PCR amplifications. Therefore, in search of a promising diagnostic tool few genes were identified to be conserved in the human and bovine filariasis and these novel primers deigned may help to develop a promising diagnostic tool for identification of lymphatic filariasis.


Subject(s)
Elephantiasis, Filarial/diagnosis , Filarioidea/isolation & purification , Molecular Diagnostic Techniques/methods , Animals , Cattle , Computational Biology , Conserved Sequence , DNA Primers/genetics , DNA, Helminth/genetics , Filarioidea/genetics , Humans , Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL