Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Pathology ; 56(4): 468-472, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38627125

ABSTRACT

DNA sequencing of tumour tissue has become the standard care for many solid cancers because of the option to detect somatic variants that have significant therapeutic, diagnostic and prognostic implications. Variants found within the tumour may be either somatic or germline in origin. Somatic cancer gene panels are developed to detect acquired (somatic) variants that are relevant for therapeutic or molecular characterisation of the tumour, expanding gene panels now include genes which may also inform patient management such as cancer predisposition syndromes (CPS) genes. Identifying germline cancer predisposition variants can alter cancer management, the risk of developing new primary cancers and risk for cancer in at-risk family members. This paper discusses the clinical, technical and ethical challenges related to identifying and reporting potential germline pathogenic variants that are detected on tumour sequencing. It also highlights the existence of the eviQ national guidelines for CPS with advice on germline confirmation of somatic findings to pathology laboratories in Australia.


Subject(s)
Genetic Predisposition to Disease , Germ-Line Mutation , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/diagnosis , Neoplasms/pathology , Genetic Testing , DNA Mutational Analysis , Australia
2.
Genome Med ; 15(1): 74, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37723522

ABSTRACT

BACKGROUND: Many families and individuals do not meet criteria for a known hereditary cancer syndrome but display unusual clusters of cancers. These families may carry pathogenic variants in cancer predisposition genes and be at higher risk for developing cancer. METHODS: This multi-centre prospective study recruited 195 cancer-affected participants suspected to have a hereditary cancer syndrome for whom previous clinical targeted genetic testing was either not informative or not available. To identify pathogenic disease-causing variants explaining participant presentation, germline whole-genome sequencing (WGS) and a comprehensive cancer virtual gene panel analysis were undertaken. RESULTS: Pathogenic variants consistent with the presenting cancer(s) were identified in 5.1% (10/195) of participants and pathogenic variants considered secondary findings with potential risk management implications were identified in another 9.7% (19/195) of participants. Health economic analysis estimated the marginal cost per case with an actionable variant was significantly lower for upfront WGS with virtual panel ($8744AUD) compared to standard testing followed by WGS ($24,894AUD). Financial analysis suggests that national adoption of diagnostic WGS testing would require a ninefold increase in government annual expenditure compared to conventional testing. CONCLUSIONS: These findings make a case for replacing conventional testing with WGS to deliver clinically important benefits for cancer patients and families. The uptake of such an approach will depend on the perspectives of different payers on affordability.


Subject(s)
Neoplastic Syndromes, Hereditary , Humans , Prospective Studies , Oncogenes , Genetic Testing , Germ Cells
3.
Br J Dermatol ; 187(6): 1045-1048, 2022 12.
Article in English | MEDLINE | ID: mdl-35975634

ABSTRACT

This study shows that gain-of-function variants in KLHL24 causing EBS and DCM, do not only originate in the start-codon and suggest that any nonsense-inducing variant affecting nucleotides c.4_84 will likely cause the same effect on protein level and a similar potential lethal phenotype.


Subject(s)
Cardiomyopathy, Dilated , Epidermolysis Bullosa Simplex , Repressor Proteins , Humans , Cardiomyopathy, Dilated/genetics , Codon, Initiator , Epidermolysis Bullosa Simplex/genetics , Intermediate Filaments , Mutation/genetics , Phenotype , Repressor Proteins/genetics
4.
Genet Med ; 24(1): 130-145, 2022 01.
Article in English | MEDLINE | ID: mdl-34906502

ABSTRACT

PURPOSE: Genetic variants causing aberrant premessenger RNA splicing are increasingly being recognized as causal variants in genetic disorders. In this study, we devise standardized practices for polymerase chain reaction (PCR)-based RNA diagnostics using clinically accessible specimens (blood, fibroblasts, urothelia, biopsy). METHODS: A total of 74 families with diverse monogenic conditions (31% prenatal-congenital onset, 47% early childhood, and 22% teenage-adult onset) were triaged into PCR-based RNA testing, with comparative RNA sequencing for 19 cases. RESULTS: Informative RNA assay data were obtained for 96% of cases, enabling variant reclassification for 75% variants that can be used for genetic counseling (71%), to inform clinical care (32%) and prenatal counseling (41%). Variant-associated mis-splicing was highly reproducible for 28 cases with samples from ≥2 affected individuals or heterozygotes and 10 cases with ≥2 biospecimens. PCR amplicons encompassing another segregated heterozygous variant was vital for clinical interpretation of 22 of 79 variants to phase RNA splicing events and discern complete from partial mis-splicing. CONCLUSION: RNA diagnostics enabled provision of a genetic diagnosis for 64% of recruited cases. PCR-based RNA diagnostics has capacity to analyze 81.3% of clinically significant genes, with long amplicons providing an advantage over RNA sequencing to phase RNA splicing events. The Australasian Consortium for RNA Diagnostics (SpliceACORD) provide clinically-endorsed, standardized protocols and recommendations for interpreting RNA assay data.


Subject(s)
RNA Splicing , RNA , Adolescent , Adult , Child, Preschool , Humans , Mutation , RNA/genetics , RNA Splicing/genetics , Sequence Analysis, RNA , Exome Sequencing
5.
Front Oncol ; 11: 738822, 2021.
Article in English | MEDLINE | ID: mdl-34604083

ABSTRACT

AIM: We aimed to describe and analyse clinical features, characteristics, and adherence to surveillance guidelines in an Australian Birt-Hogg-Dubé syndrome (BHD) and hereditary leiomyomatosis and renal cell cancer (HLRCC) cohort. METHODS: All identified patients with a diagnosis of BHD or HLRCC at RBWH 01/01/2014-01/09/2019 were included (HREC/17/QRBW/276). All patients were initially assessed and counselled by a clinical geneticist and then referred to an adult nephrologist. Baseline and incidental clinical variables were extracted and analysed. RESULTS: Fifty-seven patients were identified (28 BHD, 29 HLRCC) with a median age of 47 years. The median and cumulative follow-up were 1 and 99 years, respectively. Baseline renal MRI occurred in 40/57 patients, and 33/57 had regular MRI as per the national guidelines (eviQ). Of 18/57 without baseline imaging, nine were yet to have imaging, seven were lost follow-up, and two patients had logistic difficulties. RCC was diagnosed in 11/57 patients: two of 28 with BHD were diagnosed with RCC aged 73 and 77, both prior to commencement of surveillance. Nine of 29 patients with HLRCC were diagnosed with RCC (one of 29 during surveillance at 47 years of age) and eight of 29 prior to commencement of surveillance (11-55 years). Amongst BHD patients, cutaneous fibrofolliculomas were noted in 15 patients, lung cysts were detected in seven patients, spontaneous pneumothoraces in five patients, and parotid oncocytoma in two of 28. Amongst those with HLRCC, cutaneous leiomyomas were noted in 19/29, cutaneous leiomyosarcoma diagnosed in one of 29, and uterine fibroids in 13 female patients. CONCLUSION: Evidence-based RCC screening in BHD and HLRCC cohort is feasible and able to identify incidental renal lesions. Multidisciplinary patient management enables expedited genetic counselling, diagnosis, longitudinal screening, and RCC management. The success of this clinical model warrants consideration of undertaking longitudinal screening of BHD and HLRCC patients by nephrologists.

SELECTION OF CITATIONS
SEARCH DETAIL
...