Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Mol Genet Genomic Med ; 10(4): e1888, 2022 04.
Article in English | MEDLINE | ID: mdl-35119225

ABSTRACT

BACKGROUND: Genetic disorders contribute to significant morbidity and mortality in critically ill newborns. Despite advances in genome sequencing technologies, a majority of neonatal cases remain unsolved. Complex structural variants (SVs) often elude conventional genome sequencing variant calling pipelines and will explain a portion of these unsolved cases. METHODS: As part of the Utah NeoSeq project, we used a research-based, rapid whole-genome sequencing (WGS) protocol to investigate the genomic etiology for a newborn with a left-sided congenital diaphragmatic hernia (CDH) and cardiac malformations, whose mother also had a history of CDH and atrial septal defect. RESULTS: Using both a novel, alignment-free and traditional alignment-based variant callers, we identified a maternally inherited complex SV on chromosome 8, consisting of an inversion flanked by deletions. This complex inversion, further confirmed using orthogonal molecular techniques, disrupts the ZFPM2 gene, which is associated with both CDH and various congenital heart defects. CONCLUSIONS: Our results demonstrate that complex structural events, which often are unidentifiable or not reported by clinically validated testing procedures, can be discovered and accurately characterized with conventional, short-read sequencing and underscore the utility of WGS as a first-line diagnostic tool.


Subject(s)
Hernias, Diaphragmatic, Congenital , DNA-Binding Proteins/genetics , Genomics , Hernias, Diaphragmatic, Congenital/genetics , Humans , Infant, Newborn , Transcription Factors/genetics , Whole Genome Sequencing/methods
3.
Nat Commun ; 12(1): 5005, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34408140

ABSTRACT

Embryonic aneuploidy from mis-segregation of chromosomes during meiosis causes pregnancy loss. Proper disjunction of homologous chromosomes requires the mismatch repair (MMR) genes MLH1 and MLH3, essential in mice for fertility. Variants in these genes can increase colorectal cancer risk, yet the reproductive impacts are unclear. To determine if MLH1/3 single nucleotide polymorphisms (SNPs) in human populations could cause reproductive abnormalities, we use computational predictions, yeast two-hybrid assays, and MMR and recombination assays in yeast, selecting nine MLH1 and MLH3 variants to model in mice via genome editing. We identify seven alleles causing reproductive defects in mice including female subfertility and male infertility. Remarkably, in females these alleles cause age-dependent decreases in litter size and increased embryo resorption, likely a consequence of fewer chiasmata that increase univalents at meiotic metaphase I. Our data suggest that hypomorphic alleles of meiotic recombination genes can predispose females to increased incidence of pregnancy loss from gamete aneuploidy.


Subject(s)
Abortion, Spontaneous/genetics , Aneuploidy , Embryo Loss/genetics , MutL Protein Homolog 1/genetics , MutL Proteins/genetics , Abortion, Spontaneous/metabolism , Abortion, Spontaneous/physiopathology , Alleles , Animals , Crossing Over, Genetic , DNA Mismatch Repair , Embryo Loss/physiopathology , Female , Homologous Recombination , Humans , Litter Size , Male , Meiosis , Mice , MutL Protein Homolog 1/metabolism , MutL Proteins/metabolism , Pregnancy , Reproduction , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
4.
Hum Mutat ; 41(7): 1238-1249, 2020 07.
Article in English | MEDLINE | ID: mdl-32112660

ABSTRACT

Int22h1/Int22h2-mediated Xq28 duplication syndrome is a relatively new X-linked intellectual disability syndrome, arising from duplications of the subregion flanked by intron 22 homologous regions 1 and 2 on the q arm of chromosome X. Its primary manifestations include variable cognitive deficits, distinct facial dysmorphia, and neurobehavioral abnormalities that mainly include hyperactivity, irritability, and autistic behavior. Affected males are hemizygous for the duplication, which explains their often more severe manifestations compared with heterozygous females. In this report, we describe the cases of nine individuals recently identified having the syndrome, highlighting unique and previously unreported findings of this syndrome. Specifically, we report for the first time in this syndrome, two cases with de novo duplications, three receiving prenatal diagnosis with the syndrome, and three others having atypical versions of the duplication. Among the latter, one proband has a shortened version spanning only the centromeric half of the typical duplication, while the other two cases have a nearly identical length duplication as the classical duplication, with the exception that their duplication's breakpoints are telomerically shifted by about 0.2 Mb. Finally, we shed light on two new manifestations in this syndrome, vertebral anomalies and multiple malignancies, which possibly expand the phenotypic spectrum of the syndrome.


Subject(s)
Chromosome Duplication , Genetic Diseases, X-Linked/genetics , Intellectual Disability/genetics , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Prenatal Diagnosis , Syndrome
5.
Genetics ; 210(4): 1253-1266, 2018 12.
Article in English | MEDLINE | ID: mdl-30348651

ABSTRACT

Laboratory baker's yeast strains bearing an incompatible combination of MLH1 and PMS1 mismatch repair alleles are mutators that can adapt more rapidly to stress, but do so at the cost of long-term fitness. We identified 18 baker's yeast isolates from 1011 surveyed that contain the incompatible MLH1-PMS1 genotype in a heterozygous state. Surprisingly, the incompatible combination from two human clinical heterozygous diploid isolates, YJS5845 and YJS5885, contain the exact MLH1 (S288c-derived) and PMS1 (SK1-derived) open reading frames originally shown to confer incompatibility. While these isolates were nonmutators, their meiotic spore clone progeny displayed mutation rates in a DNA slippage assay that varied over a 340-fold range. This range was 30-fold higher than observed between compatible and incompatible combinations of laboratory strains. Genotyping analysis indicated that MLH1-PMS1 incompatibility was the major driver of mutation rate in the isolates. The variation in the mutation rate of incompatible spore clones could be due to background suppressors and enhancers, as well as aneuploidy seen in the spore clones. Our data are consistent with the observed variance in mutation rate contributing to adaptation to stress conditions (e.g., in a human host) through the acquisition of beneficial mutations, with high mutation rates leading to long-term fitness costs that are buffered by mating or eliminated through natural selection.


Subject(s)
MutL Protein Homolog 1/genetics , MutL Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Selection, Genetic/genetics , Spores, Fungal/genetics , Alleles , DNA Mismatch Repair/genetics , DNA Repair/genetics , Genotype , Humans , Mutation , Mutation Rate , Saccharomyces cerevisiae/genetics , Spores, Fungal/growth & development
6.
PLoS Genet ; 13(8): e1006974, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28827832

ABSTRACT

Mlh1-Mlh3 is an endonuclease hypothesized to act in meiosis to resolve double Holliday junctions into crossovers. It also plays a minor role in eukaryotic DNA mismatch repair (MMR). To understand how Mlh1-Mlh3 functions in both meiosis and MMR, we analyzed in baker's yeast 60 new mlh3 alleles. Five alleles specifically disrupted MMR, whereas one (mlh3-32) specifically disrupted meiotic crossing over. Mlh1-mlh3 representatives for each class were purified and characterized. Both Mlh1-mlh3-32 (MMR+, crossover-) and Mlh1-mlh3-45 (MMR-, crossover+) displayed wild-type endonuclease activities in vitro. Msh2-Msh3, an MSH complex that acts with Mlh1-Mlh3 in MMR, stimulated the endonuclease activity of Mlh1-mlh3-32 but not Mlh1-mlh3-45, suggesting that Mlh1-mlh3-45 is defective in MSH interactions. Whole genome recombination maps were constructed for wild-type and MMR+ crossover-, MMR- crossover+, endonuclease defective and null mlh3 mutants in an S288c/YJM789 hybrid background. Compared to wild-type, all of the mlh3 mutants showed increases in the number of noncrossover events, consistent with recombination intermediates being resolved through alternative recombination pathways. Our observations provide a structure-function map for Mlh3 that reveals the importance of protein-protein interactions in regulating Mlh1-Mlh3's enzymatic activity. They also illustrate how defective meiotic components can alter the fate of meiotic recombination intermediates, providing new insights for how meiotic recombination pathways are regulated.


Subject(s)
Homologous Recombination/genetics , MutL Protein Homolog 1/genetics , MutL Proteins/genetics , Protein Interaction Maps/genetics , Saccharomyces cerevisiae Proteins/genetics , Alleles , Crossing Over, Genetic , DNA Mismatch Repair/genetics , Genome, Fungal , Meiosis/genetics , Saccharomyces cerevisiae/genetics , Structure-Activity Relationship
7.
Genetics ; 205(4): 1459-1471, 2017 04.
Article in English | MEDLINE | ID: mdl-28193730

ABSTRACT

An elevated mutation rate can provide cells with a source of mutations to adapt to changing environments. We identified a negative epistatic interaction involving naturally occurring variants in the MLH1 and PMS1 mismatch repair (MMR) genes of Saccharomyces cerevisiae We hypothesized that this MMR incompatibility, created through mating between divergent S. cerevisiae, yields mutator progeny that can rapidly but transiently adapt to an environmental stress. Here we analyzed the MLH1 and PMS1 genes across 1010 S. cerevisiae natural isolates spanning a wide range of ecological sources (tree exudates, Drosophila, fruits, and various fermentation and clinical isolates) and geographical sources (Europe, America, Africa, and Asia). We identified one homozygous clinical isolate and 18 heterozygous isolates containing the incompatible MMR genotype. The MLH1-PMS1 gene combination isolated from the homozygous clinical isolate conferred a mutator phenotype when expressed in the S288c laboratory background. Using a novel reporter to measure mutation rates, we showed that the overall mutation rate in the homozygous incompatible background was similar to that seen in compatible strains, indicating the presence of suppressor mutations in the clinical isolate that lowered its mutation rate. This observation and the identification of 18 heterozygous isolates, which can lead to MMR incompatible genotypes in the offspring, are consistent with an elevated mutation rate rapidly but transiently facilitating adaptation. To avoid long-term fitness costs, the incompatibility is apparently buffered by mating or by acquiring suppressors. These observations highlight effective strategies in eukaryotes to avoid long-term fitness costs associated with elevated mutation rates.


Subject(s)
DNA Mismatch Repair , Saccharomyces cerevisiae/genetics , Evolution, Molecular , Genetic Background , Genetic Fitness , Homozygote , MutL Protein Homolog 1/genetics , MutL Proteins/genetics , Mutation Rate , Phenotype , Saccharomyces cerevisiae Proteins/genetics
8.
Cancer Lett ; 341(2): 204-13, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23941827

ABSTRACT

Carboxypeptidase E (CPE), a prohormone processing enzyme is highly expressed and secreted from (neuro)endocrine tumors and gliomas, and has been implicated in cancer progression by promoting tumor growth. Our study demonstrates that secreted or exogenously applied CPE promotes survival of pheochromocytoma (PC12) and hepatocellular carcinoma (MHCC97H) cells under nutrient starvation and hypoxic conditions, but had no effect on their proliferation. CPE also reduced migration and invasion of fibrosarcoma (HT1080) cells. We show that CPE treatment mediates survival of MHCC97H cells during metabolic stress by up-regulating the expression of anti-apoptotic protein BCL-2, and other pro-survival genes, via activation of the ERK1/2 pathway.


Subject(s)
Carboxypeptidase H/metabolism , Cell Movement/physiology , Cell Proliferation , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Carboxypeptidase H/genetics , Carboxypeptidase H/immunology , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Cell Survival/physiology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunoblotting , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neoplasm Invasiveness , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , PC12 Cells , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA Interference , Rats , Recombinant Proteins/pharmacology , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL