Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38591660

ABSTRACT

Self-healing cementitious materials containing microcapsules filled with healing agents can autonomously seal cracks and restore structural integrity. However, optimising the microcapsule mechanical properties to survive concrete mixing whilst still rupturing at the cracked interface to release the healing agent remains challenging. This study develops an integrated numerical modelling and machine learning approach for tailoring acrylate-based microcapsules for triggering within cementitious matrices. Microfluidics is first utilised to produce microcapsules with systematically varied shell thickness, strength, and cement compatibility. The capsules are characterised and simulated using a continuum damage mechanics model that is able to simulate cracking. A parametric study investigates the key microcapsule and interfacial properties governing shell rupture versus matrix failure. The simulation results are used to train an artificial neural network to rapidly predict the triggering behaviour based on capsule properties. The machine learning model produces design curves relating the microcapsule strength, toughness, and interfacial bond to its propensity for fracture. By combining advanced simulations and data science, the framework connects tailored microcapsule properties to their intended performance in complex cementitious environments for more robust self-healing concrete systems.

2.
Materials (Basel) ; 17(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612091

ABSTRACT

Given the challenges we face of an ageing infrastructure and insufficient maintenance, there is a critical shift towards preventive and predictive maintenance in construction. Self-sensing cement-based materials have drawn interest in this sector due to their high monitoring performance and durability compared to electronic sensors. While bulk applications have been well-discussed within this field, several challenges exist in their implementation for practical applications, such as poor workability and high manufacturing costs at larger volumes. This paper discusses the development of smart carbon-based cementitious coatings for strain monitoring of concrete substrates under flexural loading. This work presents a physical, electrical, and electromechanical investigation of sensing coatings with varying carbon black (CB) concentrations along with the geometric optimisation of the sensor design. The optimal strain-sensing performance, 55.5 ± 2.7, was obtained for coatings with 2 wt% of conductive filler, 3 mm thickness, and a gauge length of 60 mm. The results demonstrate the potential of applying smart coatings with carbon black addition for concrete strain monitoring.

3.
Chemosphere ; 308(Pt 1): 136290, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36058373

ABSTRACT

Permeable reactive barrier (PRB) is one of the most promising in-situ groundwater remediation technologies due to its low costs and wide immobilization suitability for multiple contaminants. Reactive medium is a key component of PRBs and their selection needs to consider removal effectiveness as well as permeability. Zeolites have been extensively reported as reactive media owing to their high adsorption capacity, diverse pore structure and high stability. Moreover, the application of zeolites can reduce the PRBs fouling and clogging compared to reductants like zero-valence iron (ZVI) due to no formation of secondary precipitates, such as iron monosulfide, in spite of their reactivity to remove organics. This study gives a detailed review of lab-scale applications of zeolites in PRBs in terms of sorption characteristics, mechanisms, column performance and desorption features, as well as their field-scale applications to point out their application tendency in PRBs for contaminated groundwater remediation. On this basis, future prospects and suggestions for using zeolites in PRBs for groundwater remediation were put forward. This study provides a comprehensive and critical review of the lab-scale and field-scale applications of zeolites in PRBs and is expected to guide the future design and applications of adsorbents-based PRBs for groundwater remediation.


Subject(s)
Environmental Restoration and Remediation , Groundwater , Water Pollutants, Chemical , Zeolites , Groundwater/chemistry , Iron/chemistry , Reducing Agents , Water Pollutants, Chemical/analysis
4.
Materials (Basel) ; 15(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35888417

ABSTRACT

Intelligent cementitious materials integrated with carbon nanofibers (CNFs) have the potential to be used as sensors in structural health monitoring (SHM). The difficulty in dispersing CNFs in cement-based matrices, however, limits the sensitivity to deformation (gauge factor) and strength. Here, we synthesise CNF by chemical vapour deposition on the surface of calcium oxide (CaO) and, for the first time, investigate this amphiphilic carbon nanomaterial for self-sensing in mortar. SEM, TEM, TGA, Raman and VSM were used to characterise the produced CNF@CaO. In addition, the electrical resistivity of the mortar, containing different concentrations of CNF with and without CaO, was measured using the four-point probe method. Furthermore, the piezoresistive response of the composite was quantified by means of compressive loading. The synthesised CNF was 5-10 µm long with an average diameter of ~160 nm, containing magnetic nanoparticles inside. Thermal decomposition of the CNF@CaO compound indicated that 26% of the material was composed of CNF; after CaO removal, 84% of the material was composed of CNF. The electrical resistivity of the material drops sharply at concentrations of 2% by weight of CNF and this drop is even more pronounced for samples with 1.2% by weight of washed CaO. This indicates a better dispersion of the material when the CaO is removed. The sensitivity to deformation of the sample with 1.2% by weight of CNF@CaO was quantified as a gauge factor (GF) of 1552, while all other samples showed a GF below 100. Its FCR amplitude can vary inversely up to 8% by means of cyclic compressive loading. The method proposed in this study provides versatility for the fabrication of carbon nanofibers on a tailored substrate to promote self-sensing in cementitious materials.

5.
J Environ Sci (China) ; 122: 41-49, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35717089

ABSTRACT

The co-contamination of metals and organic pollutants, such as Pb and methyl tert-butyl ether (MTBE), in groundwater, has become a common and major phenomenon in many contaminated sites. This study evaluated the feasibility of their simultaneous removal with permeable reactive barrier (PRB) packed with mixed zeolites (clinoptilolite and ZSM-5) using fixed-bed column tests and breakthrough curve modeling. The effect of grain size on the permeability of PRB and removal efficacy was also assessed by granular and power clinoptilolite. The replacement of granular clinoptilolite by powder clinoptilolite largely reduced the breakthrough time but increased the saturation time nearly fourfold. The column adsorption capacity of clinoptilolite powders almost tripled that of clinoptilolite granules (130.6 mg/g versus 45.3 mg/g) due to higher specific surface areas. The minimum thickness and corresponding longevity of PRB were calculated as 7.12 cm and 321.5 min when 5% of granular clinoptilolite was mixed with 5% ZSM-5 and 90% sand as mixed PRB reactive media compared with 10.86 cm and 1230.2 min for the application of powder clinoptilolite. This study is expected to provide theoretical support and guidance for the practical application of mixed adsorbents in PRBs.


Subject(s)
Groundwater , Methyl Ethers , Water Pollutants, Chemical , Zeolites , Adsorption , Lead , Powders
6.
Sci Total Environ ; 831: 154708, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35337881

ABSTRACT

Conventional subsurface barrier materials for contamination containment deteriorate in aggressive environments and only have a limited exchange/adsorption capacity for heavy metals. This study focused on the potential use of superabsorbent polymer (SAP) in soil-cement subsurface barriers for enhanced heavy metal sorption and self-healing. The SAP adsorption results for lead, copper, zinc and nickel were well fitted by the Langmuir model. The SAP had the highest adsorption capacity for lead at 175 mg/g, and plays a key role in the removal of the heavy metals in an acidic environment. In addition, the incorporation of SAP in soil-cement increased the ductility and had negligible adverse effects on mechanical and permeability properties. When cracks propagate in the matrix, the SAP is exposed to the ingress of water and swells, and this swelling reaction seals the cracks. The SAP-containing soil-cement demonstrated enhanced self-healing performance in terms of the recovery of permeability. The uniform dispersion and the 3D network of the SAP were observed using micro-CT scanning, and good bonding and self-healing mechanism were confirmed by SEM-EDX analysis. The results suggest the significant potential for the SAP-based approach for the development of more resilient subsurface barriers with enhanced heavy metal sorption and self-healing.


Subject(s)
Metals, Heavy , Soil Pollutants , Adsorption , Metals, Heavy/analysis , Polymers , Soil , Soil Pollutants/analysis
7.
Lab Chip ; 21(23): 4652-4659, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34734612

ABSTRACT

Capsule-based self-healing of cementitious materials is an effective way of healing cracks, significantly extending the life of structures, without imposing changes due to the incorporation of capsules into products during mixing. The methodologies currently being used for the development of capsules with a liquid core as a healing agent yield a wide range of sizes and shell thicknesses for the microcapsules, preventing a detailed assessment and optimisation of the microcapsule size and its effects. Uniquely, microfluidic technology offers precise control over the size and shell thickness through the formation of double emulsions. The drawback is that only small quantities of material can be typically produced. Here, by using paralleled junctions in a microfluidic device, high throughput production of materials was achieved, focusing for the first time on self-healing of cementitious materials. A microfluidic chip was assembled with 4 channels in parallel and selected hydrophobicity for the formation of the double emulsions. A coefficient of variation below 2.5% was observed for the 4 junctions, demonstrating the formation of monodisperse capsules. The control over the size and shell thickness by adjusting the flow rates was demonstrated, yielding capsules with an outer diameter of 615-630 µm and a shell thickness varying between 50 and 127 µm. By using triethanolamine as a surfactant, capsules with an aqueous core were produced. Furthermore, by selecting PEA, an acrylate with low tensile strength, the capsules embedded in the cement paste were successfully triggered to release the healing agent by crack formation. Capsules were successfully produced continuously for 7 h, with inner and outer diameters of 500 ± 31 µm and 656 ± 9 µm at a production rate of ∼13 g h-1 and a yield of around 80%. With these results and considering up to 6 chips in parallel, the production rate could be up to 1.5 kg per day. This demonstrates the huge potential of the microfluidic device with unique features to produce sufficiently large quantities of microcapsules for laboratory-scale assessment of self-healing performance.


Subject(s)
Microfluidics , Water , Capsules , Emulsions
8.
J Hazard Mater ; 420: 126528, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34265651

ABSTRACT

The co-contamination of the environment by metals and organic pollutants is a significant concern, and one such example is lead (Pb) and methyl tert-butyl ether (MTBE) due to their historic use as fuel additives. Clinoptilolite is an abundant and efficient zeolite for metal removal, but the potential interference of co-existing organic pollutants on metal removal, such as MTBE, have rarely been discussed. In this study, a combination of batch sorption tests and synchrotron-based X-ray absorption spectroscopic analyses were employed to investigate Pb sorption mechanism(s) onto clinoptilolite in the presence and absence of MTBE. A comparison was made to synthetic ZSM-5 zeolite to gain insights into differences in Pb binding mechanisms between hydrophilic (clinoptilolite) and hydrophobic (ZSM-5) zeolites. Site occupancy and surface precipitation contributed equally to Pb removal by clinoptilolite, while surface precipitation was the main Pb removal mechanism for ZSM-5 followed by site occupancy. Despite the negligible effect of 100 mg/L MTBE on observed Pb removal from solution by both zeolites, a surface-embedded Pb removal mechanism, through the Mg site on clinoptilolite surface, arises when MTBE is present. This study provides an understanding of atomic-level Pb uptake mechanisms on zeolites, with and without co-contaminating MTBE, which aids in their application in water treatment at co-contaminated sites.


Subject(s)
Methyl Ethers , Water Pollutants, Chemical , Water Purification , Zeolites , Adsorption , Lead
9.
Materials (Basel) ; 14(8)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920620

ABSTRACT

Self-healing concrete has the potential to optimise traditional design approaches; however, commercial uptake requires the ability to harmonize against standardized frameworks. Within EU SARCOS COST Action, different interlaboratory tests were executed on different self-healing techniques. This paper reports on the evaluation of the effectiveness of proposed experimental methodologies suited for self-healing concrete with expansive mineral additions. Concrete prisms and discs with MgO-based healing agents were produced and precracked. Water absorption and water flow tests were executed over a healing period spanning 6 months to assess the sealing efficiency, and the crack width reduction with time was monitored. High variability was reported for both reference (REF) and healing-addition (ADD) series affecting the reproducibility of cracking. However, within each lab, the crack width creation was repeatable. ADD reported larger crack widths. The latter influenced the observed healing making direct comparisons across labs prone to errors. Water absorption tests highlighted were susceptible to application errors. Concurrently, the potential of water flow tests as a facile method for assessment of healing performance was shown across all labs. Overall, the importance of repeatability and reproducibility of testing methods is highlighted in providing a sound basis for incorporation of self-healing concepts in practical applications.

10.
Chemosphere ; 275: 129997, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33662733

ABSTRACT

Porous media are widely adopted as immobilization sorbents in environmental engineering. The microscale difference in pore structure formation causes significant deflection in a vast landscape. Computational fluid dynamics (CFD) offers a comparative approach to evaluate the individual influence from pore structure formation with strictly controlled surface and volume properties. This paper presents a comprehensive comparison between the performance of cylindrical media and spherical-media in heavy metal immobilization. Digital testing was performed to measure the surface area, specific surface area, density and porosity. Image-based input technique was developed to reconstruct the cylindrical media. It was found that although the surface area, specific surface area and porosity were the same, the spherical media still had an accelerated immobilization rate. Results further showed that the spherical media in floatation arrangement had an immobilization rate of 16% higher than the cylindrical media with the same surface properties. Non-floatation arrangement of the spherical media caused a reduction in immobilization capacity up to 32.8% lower than the cylindrical media. The cylindrical media demonstrated an advantage of being structurally stable under high porosity, the latter of which resulted in an increased immobilization capacity compared with the spherical-media. The results suggest that the cylindrical bio-microstructure is desirable for heavy metal immobilization in a non-flotational environment. The computational approach provides a digital solution to evaluate the immobilization in 3D architected media. The proposed testing methods are feasible for both experimentally obtained images and structures from algorithm-generation.


Subject(s)
Hydrodynamics , Metals, Heavy , Porosity , Surface Properties
11.
Materials (Basel) ; 13(24)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353221

ABSTRACT

Soil mix cut-off walls have been increasingly used for containment of organic contaminants in polluted land. However, the mixed soil is susceptible to deterioration due to aggressive environmental and mechanical stresses, leading to crack-originated damage and requiring costly maintenance. This paper proposed a novel approach to achieve self-healing properties of soil mix cut-off wall materials triggered by the ingress of organic contaminants. Oil sorbent polymers with high absorption and swelling capacities were incorporated in a cementitious grout and mixed with soil using a laboratory-scale auger setup. The self-healing performance results showed that 500 µm-wide cracks could be bridged and blocked by the swollen oil sorbents, and that the permeability was reduced by almost an order of magnitude after the permeation of liquid paraffin. It was shown by micro-CT scan tests that the network formed by the swollen oil sorbents acted as attachments and binder, preventing the cracked mixed soil sample from crumbling, and that the oil sorbents swelled three times in volume and therefore occupied the air space and blocked the cracks in the matrix. These promising results exhibit the potential for the oil sorbents to provide soil mix cut-off walls in organically-contaminated land with self-healing properties and enhanced durability.

12.
Materials (Basel) ; 13(24)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371389

ABSTRACT

Cementitious composites are the most widely used construction materials; however, their poor durability necessitates frequent monitoring and repairs. The emergence of self-sensing composites could reduce the need for costly and time-consuming structural inspections. Natural graphite, due to its low cost and wide availability, is a promising additive to generate an electrically conductive network which could ultimately lead to a self-sensing mechanism. Despite several studies using natural graphite as a conductive additive, the effect of its fineness on the cementitious composite's performance has not been explored. This study experimentally investigated the effect of three graphite products of varying fineness on the early age, mechanical, and electrical conductivity performance of cement pastes. The fluidity of the graphite-cement paste reduced significantly with increasing graphite fineness, and graphite did not affect the cement hydration. The finer the graphite, the lower the effect on the mechanical performance, as confirmed by compressive strength testing and micro-indentation. Electrical conductivity testing showed that the percolation threshold depended on the graphite fineness and was found at ~20 wt % for the fine and medium graphite, while it increased to 30-40 wt % for the coarse graphite. This is the first study that has investigated holistically the effect of graphite fineness on the performance of cement pastes and will pave the way for using this material as an additive for self-sensing structures.

13.
Sci Technol Adv Mater ; 21(1): 661-682, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-33061839

ABSTRACT

Development and commercialization of self-healing concrete is hampered due to a lack of standardized test methods. Six inter-laboratory testing programs are being executed by the EU COST action SARCOS, each focusing on test methods for a specific self-healing technique. This paper reports on the comparison of tests for mortar and concrete specimens with polyurethane encapsulated in glass macrocapsules. First, the pre-cracking method was analysed: mortar specimens were cracked in a three-point bending test followed by an active crack width control technique to restrain the crack width up to a predefined value, while the concrete specimens were cracked in a three-point bending setup with a displacement-controlled loading system. Microscopic measurements showed that with the application of the active control technique almost all crack widths were within a narrow predefined range. Conversely, for the concrete specimens the variation on the crack width was higher. After pre-cracking, the self-healing effect was characterized via durability tests: the mortar specimens were tested in a water permeability test and the spread of the healing agent on the crack surfaces was determined, while the concrete specimens were subjected to two capillary water absorption tests, executed with a different type of waterproofing applied on the zone around the crack. The quality of the waterproofing was found to be important, as different results were obtained in each absorption test. For the permeability test, 4 out of 6 labs obtained a comparable flow rate for the reference specimens, yet all 6 labs obtained comparable sealing efficiencies, highlighting the potential for further standardization.

14.
Materials (Basel) ; 13(2)2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31963604

ABSTRACT

A majority of well integrity problems originate from cracks of oil well cement. To address the crack issues, bespoke sodium silicate microcapsules were used in this study for introducing autonomous crack healing ability to oil well cement under high-temperature service conditions at 80 °C. Two types of sodium silicate microcapsule, which differed in their polyurea shell properties, were first evaluated on their suitability for use under the high temperature of 80 °C in the wellbore. Both types of microcapsules showed good thermal stability and survivability during mixing. The microcapsules with a more rigid shell were chosen over microcapsule with a more rubbery shell for further tests on the self-healing efficiency since the former had much less negative effect on the oil well cement strength. It was found that oil well cement itself showed very little healing capability when cured at 80 °C, but the addition of the microcapsules significantly promoted its self-healing performance. After healing for 7 days at 80 °C, the microcapsule-containing cement pastes achieved crack depth reduction up to ~58%, sorptivity coefficient reduction up to ~76%, and flexural strength regain up to ~27%. The microstructure analysis further confirmed the stability of microcapsules and their self-healing reactions upon cracking in the high temperature oil well cement system. These results provide a promising perspective for the development of self-healing microcapsule-based oil well cements.

15.
Chemosphere ; 239: 124738, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31494316

ABSTRACT

Stabilization/Solidification (S/S) has been widely used in soil remediation to both improve physical properties and immobilize extensive contaminants. GGBS (granulated ground blast furnace slag)-MgO-CaO (GMCs) was used to treat Pb/Zn contaminated soil. The physical and microstructural characteristics of stabilized/solidified contaminated soil were investigated in this study. Microstructural analysis showed that the main hydration products of GMC treated contaminated soil were C-S-H and hydrotalcite like gels (Ht), which dominated the physical strength of S/S soil. The unconfined compressive strength (UCS) and the leachability of GMC treated contaminated soil were improved with the increase in GMC proportion (5%-15%), curing time (7 days and 28 days) and temperature (5 °C, 21 °C and 45 °C) due to the enhanced hydration. The compressive strengths of the majority mixes met the US EPA criterion (0.35 MPa). The strength of S/S soils was less affected by the increase of curing temperature after a longer curing period (28 days). According to the XRD and SEM results, both Pb and Zn in S/S contaminated soil could be immobilized by the precipitation and the adsorption on the surface of calcium silicate hydrate (C-S-H). Zn can also be incorporated into the structure of C-S-H and Ht. The addition of Pb/Zn decreased the physical strength in the order of: Pb(5000 mg/kg)>Pb(10000 mg/kg)>Zn/Pb(5000 mg/kg)>Pb(20000 mg/kg).


Subject(s)
Environmental Restoration and Remediation/methods , Lead/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Zinc/chemistry , Aluminum Hydroxide/chemistry , Calcium Compounds/chemistry , China , Magnesium Hydroxide/chemistry , Magnesium Oxide/chemistry , Microscopy, Electron, Scanning , Oxides/chemistry , Silicates/chemistry , Temperature , X-Ray Diffraction
16.
Materials (Basel) ; 12(23)2019 Nov 23.
Article in English | MEDLINE | ID: mdl-31771222

ABSTRACT

Pursuing long-term self-healing infrastructures has gained popularity in the construction field. Vascular networks have the potential to achieve long-term self-healing in cementitious infrastructures. To avoid further monitoring of non-cementitious tubes, sacrificial material can be used as a way of creating hollow channels. In this research, we report a new method for fabrication of complex 3D internal hollow tunnels using 3D printing of polyvinyl alcohol (PVA). The behaviour of 3D printed PVA structures in cement pastes was investigated using computed-tomography (CT) combined with X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy with energy dispersive spectroscopy (SEM/EDX). Results showed that (i) 1300 min were needed to fully dissolve 1 g of a 3D printed PVA structure, and different pH solutions did not significantly change the PVA dissolving process compared with a neutral environment; (ii) a low water/cement ratio can minimize early stage cracking resulting from PVA expansion; (iii) and PVA-cement interaction products were mainly calcite and a Ca-polymer compound. In conclusion, controlling the PVA expansion by decreasing the water/cement (w/c) ratio provides a promising approach to achieve 3D hollow channels in cement and, therefore, makes it possible to create complex tunnels within self-healing cementitious materials.

17.
Environ Sci Pollut Res Int ; 26(26): 26963-26971, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31309424

ABSTRACT

In this study, the impact of the curing temperature on leaching behaviour and durability of GGBS-MgO-CaO (GMC)-stabilized/GMC-solidified Pb/Zn-contaminated clay soils was investigated. Toxicity characteristic leaching procedure (TCLP) test, wetting-drying cycles, freeze-thaw cycles and unconfined compression strength (UCS) test were carried out. The influence of curing temperature, binder dosage and curing time on the performance of these samples was investigated. The results show that the leachability and the durability of all samples were improved by increasing curing temperature, curing time and binder dosage. GMCs are more functional in immobilizing Pb compared with Zn, especially in immobilizing high Pb-contaminated soils. The mass loss and Pb/Zn leachability of all samples increased, while their strength decreased after cyclic wetting-drying and cyclic freeze-thaw. Furthermore, curing at 21 °C and 45 °C, the freeze-thaw resistance of 10% GMC-treated soil (GMC10) was found better than that of 10% Portland cement-treated soil (PC10). After 10 cycles of wetting-drying, GMC10 is more chemically stable than PC10.


Subject(s)
Lead/chemistry , Soil Pollutants/chemistry , Zinc/chemistry , Construction Materials , Desiccation , Freezing , Soil/chemistry , Temperature
18.
Chemosphere ; 220: 422-431, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30594793

ABSTRACT

ZSM-5, as a hydrophobic zeolite, has a good adsorption capacity for methyl tert-butyl ether (MTBE) in batch adsorption studies. This study explores the applicability of ZSM-5 as a reactive material in permeable reactive barriers (PRBs) to decontaminate the MTBE-containing groundwater. A series of laboratory scale fixed-bed column tests were carried out to determine the breakthrough curves and evaluate the adsorption performance of ZSM-5 towards MTBE under different operational conditions, including bed length, flow rate, initial MTBE concentration and ZSM-5 dosage, and regeneration tests were carried out at 80, 150 and 300 °C for 24 h. Dose-Response model was found to best describe the breakthrough curves. MTBE was effectively removed by the fixed-bed column packed with a ZSM-5/sand mixture with an adsorption capacity of 31.85 mg g-1 at 6 cm bed length, 1 mL min-1 flow rate, 300 mg L-1 initial MTBE concentration and 5% ZSM-5 dosage. The maximum adsorption capacity increased with the increase of bed length and the decrease of flow rate and MTBE concentration. The estimated kinetic parameters can be used to predict the dynamic behaviour of column systems. In addition, regeneration study shows that the adsorption capacity of ZSM-5 remains satisfactory (>85%) after up to four regeneration cycles.


Subject(s)
Groundwater/analysis , Methyl Ethers/analysis , Methyl Ethers/isolation & purification , Water Purification/instrumentation , Zeolites/chemistry , Adsorption , Water Purification/methods
19.
Environ Sci Pollut Res Int ; 25(15): 14626-14635, 2018 May.
Article in English | MEDLINE | ID: mdl-29532375

ABSTRACT

In order to understand the influence of feedstock type on biochar adsorption of heavy metals, the adsorption characteristics of nickel (Ni2+), copper (Cu2+) and lead (Pb2+) onto biochars derived from mixed softwood and Miscanthus straw were compared. The biochars were produced from mixed softwood pellets (SWP) and Miscanthus straw pellets (MSP), at both 550 and 700 °C for each material, using a standardised production procedure recommended by the UK Biochar Research Centre. Kinetics analyses show that the adsorption of Ni2+ to all four biochars reached equilibrium within 5 min. The degree of Ni2+ removal for all four biochars remained nearly constant within initial pH values of 3-8, because the equilibrium pH values within this range were similar due to the buffering effect of the biochars. A sharp increase of Ni2+ removal percentage for all biochars at initial solution pH 8-10 was observed as the equilibrium pH also increased. MSP derived biochars generally had higher maximum adsorption capacities (Qmax) for the three tested metals as compared with those from SWP, which was likely due to their higher degree of carbonisation during production. This study shows that feedstock type is a primary factor affecting the adsorption capacities of the tested biochars for heavy metals.


Subject(s)
Charcoal/chemistry , Copper/chemistry , Metals, Heavy/chemistry , Nickel/chemistry , Adsorption , Charcoal/metabolism
20.
Environ Sci Pollut Res Int ; 25(16): 16050-16060, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29594899

ABSTRACT

The leaching performance of stabilised/solidified contaminated model soil was studied to investigate the benefit of stabilisation/solidification treatment using novel binders over conventional binders. Different combinations of Portland cement (PC), ground granulated blast-furnace slag (GGBS), pulverised fly ash (PFA), and magnesia (MgO) were used and grouped into PC-based and MgO-based binders. A semi-dynamic leaching test was used, where the cumulative releases of Zn, Cu, Ni, Pb, Ca, and Mg were measured and the effective diffusion coefficients (De) and the leachability indices (LX) were calculated. The effects of different binders and water/cement ratios (w/c) on the migration of different metals after treatment were also discussed. The results showed that w/c ratio has a significant impact on the cumulative leachability of heavy metals. The diffusion coefficients of Pb and Zn are higher than those of Cu and Ni. In addition, mixes (w/c at 0.5:1) showed better performance in immobilising heavy metals than mixes (w/c at 1:1), especially in the case of Cu, Ni, and Pb.


Subject(s)
Magnesium Oxide/chemistry , Metals, Heavy/analysis , Soil Pollutants/analysis , Cementation , Coal Ash , Construction Materials , Industrial Waste , Metals, Heavy/chemistry , Soil , Soil Pollutants/chemistry , Water
SELECTION OF CITATIONS
SEARCH DETAIL