Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Res ; 120(8): 855-868, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38613511

ABSTRACT

AIMS: Atrial fibrillation (AF) and concomitant cardiometabolic disease processes interact and combine to lead to adverse events, such as stroke, heart failure, myocardial infarction, and cardiovascular death. Circulating biomolecules provide quantifiable proxies for cardiometabolic disease processes. The aim of this study was to test whether biomolecule combinations can define phenotypes in patients with AF. METHODS AND RESULTS: This pre-specified analysis of the EAST-AFNET 4 biomolecule study assigned patients to clusters using polytomous variable latent-class analysis based on baseline concentrations of 13 precisely quantified biomolecules potentially reflecting ageing, cardiac fibrosis, metabolic dysfunction, oxidative stress, cardiac load, endothelial dysfunction, and inflammation. In each cluster, rates of cardiovascular death, stroke, or hospitalization for heart failure or acute coronary syndrome, the primary outcome of EAST-AFNET 4, were calculated and compared between clusters over median 5.1 years follow-up. Findings were independently validated in a prospective cohort of 748 patients with AF (BBC-AF; median follow-up 2.9 years).Unsupervised biomolecule analysis assigned 1586 patients (71 years old, 46% women) into four clusters. The highest risk cluster was dominated by elevated bone morphogenetic protein 10, insulin-like growth factor-binding protein 7, N-terminal pro-B-type natriuretic peptide, angiopoietin 2, and growth differentiation factor 15. Patients in the lowest risk cluster showed low concentrations of these biomolecules. Two intermediate-risk clusters differed by high or low concentrations of C-reactive protein, interleukin-6, and D-dimer. Patients in the highest risk cluster had a five-fold higher cardiovascular event rate than patients in the low-risk cluster. Early rhythm control was effective across clusters (Pinteraction = 0.63). Sensitivity analyses and external validation in BBC-AF replicated clusters and risk gradients. CONCLUSION: Biomolecule concentrations identify cardiometabolic subphenotypes in patients with AF at high and low cardiovascular risk.


Subject(s)
Atrial Fibrillation , Biomarkers , Cardiometabolic Risk Factors , Phenotype , Humans , Female , Male , Atrial Fibrillation/diagnosis , Atrial Fibrillation/blood , Atrial Fibrillation/physiopathology , Atrial Fibrillation/epidemiology , Aged , Biomarkers/blood , Risk Assessment , Middle Aged , Prospective Studies , Predictive Value of Tests , Prognosis , Time Factors , Aged, 80 and over , Europe/epidemiology
2.
Sci Rep ; 13(1): 16743, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798357

ABSTRACT

Early detection of atrial fibrillation (AF) enables initiation of anticoagulation and early rhythm control therapy to reduce stroke, cardiovascular death, and heart failure. In a cross-sectional, observational study, we aimed to identify a combination of circulating biomolecules reflecting different biological processes to detect prevalent AF in patients with cardiovascular conditions presenting to hospital. Twelve biomarkers identified by reviewing literature and patents were quantified on a high-precision, high-throughput platform in 1485 consecutive patients with cardiovascular conditions (median age 69 years [Q1, Q3 60, 78]; 60% male). Patients had either known AF (45%) or AF ruled out by 7-day ECG-monitoring. Logistic regression with backward elimination and a neural network approach considering 7 key clinical characteristics and 12 biomarker concentrations were applied to a randomly sampled discovery cohort (n = 933) and validated in the remaining patients (n = 552). In addition to age, sex, and body mass index (BMI), BMP10, ANGPT2, and FGF23 identified patients with prevalent AF (AUC 0.743 [95% CI 0.712, 0.775]). These circulating biomolecules represent distinct pathways associated with atrial cardiomyopathy and AF. Neural networks identified the same variables as the regression-based approach. The validation using regression yielded an AUC of 0.719 (95% CI 0.677, 0.762), corroborated using deep neural networks (AUC 0.784 [95% CI 0.745, 0.822]). Age, sex, BMI and three circulating biomolecules (BMP10, ANGPT2, FGF23) are associated with prevalent AF in unselected patients presenting to hospital. Findings should be externally validated. Results suggest that age and different disease processes approximated by these three biomolecules contribute to AF in patients. Our findings have the potential to improve screening programs for AF after external validation.


Subject(s)
Atrial Fibrillation , Stroke , Humans , Male , Aged , Female , Angiopoietin-2 , Cross-Sectional Studies , Biomarkers , Stroke/complications , Risk Factors , Bone Morphogenetic Proteins/therapeutic use
3.
Cardiovasc Res ; 119(9): 1799-1810, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37264683

ABSTRACT

AIMS: The randomized Early Treatment of Atrial Fibrillation for Stroke Prevention Trial found that early rhythm control reduces cardiovascular events in patients with recently diagnosed atrial fibrillation (AF) compared with usual care. How genetic predisposition to AF and stroke interacts with early rhythm-control therapy is not known. METHODS AND RESULTS: Array genotyping and imputation for common genetic variants were performed. Polygenic risk scores (PRS) were calculated for AF (PRS-AF) and ischaemic stroke risk (PRS-stroke). The effects of PRS-AF and PRS-stroke on the primary outcome (composite of cardiovascular death, stroke, and hospitalization for acute coronary syndrome or worsening heart failure), its components, and recurrent AF were determined.A total of 1567 of the 2789 trial patients were analysed [793 randomized to early rhythm control; 774 to usual care, median age 71 years (65-75), 704 (44%) women]. Baseline characteristics were similar between randomized groups. Early rhythm control reduced the primary outcome compared with usual care [HR 0.67, 95% CI: (0.53, 0.84), P < 0.001]. The randomized intervention, early rhythm control, did not interact with PRS-AF (interaction P = 0.806) or PRS-stroke (interaction P = 0.765). PRS-AF was associated with recurrent AF [HR 1.08 (01.0, 1.16), P = 0.047]. PRS-stroke showed an association with the primary outcome [HR 1.13 (1.0, 1.27), P = 0.048], driven by more heart failure events [HR 1.23 (1.05-1.43), P = 0.010] without differences in stroke [HR 1.0 (0.75, 1.34), P = 0.973] in this well-anticoagulated cohort. In a replication analysis, PRS-stroke was associated with incident AF [HR 1.16 (1.14, 1.67), P < 0.001] and with incident heart failure in the UK Biobank [HR 1.08 (1.06, 1.10), P < 0.001]. The association with heart failure was weakened when excluding AF patients [HR 1.03 (1.01, 1.05), P = 0.001]. CONCLUSIONS: Early rhythm control is effective across the spectrum of genetic AF and stroke risk. The association between genetic stroke risk and heart failure calls for research to understand the interactions between polygenic risk and treatment. REGISTRATION: ISRCTN04708680, NCT01288352, EudraCT2010-021258-20, www.easttrial.org.


Subject(s)
Atrial Fibrillation , Brain Ischemia , Heart Failure , Stroke , Humans , Female , Aged , Male , Atrial Fibrillation/diagnosis , Atrial Fibrillation/drug therapy , Atrial Fibrillation/epidemiology , Brain Ischemia/complications , Stroke/diagnosis , Stroke/epidemiology , Stroke/genetics , Risk Factors , Heart Failure/diagnosis , Heart Failure/epidemiology , Heart Failure/genetics
SELECTION OF CITATIONS
SEARCH DETAIL