Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Histochem Cytochem ; 72(8-9): 551-568, 2024.
Article in English | MEDLINE | ID: mdl-39212098

ABSTRACT

Branched-chain amino acids (BCAAs) play vital roles in metabolic and physiological processes, with their catabolism initiated by two branched-chain aminotransferase isozymes: cytosolic (BCATc) and mitochondrial (BCATm). These enzymes have tissue and cell-specific compartmentalization and are believed to shuttle metabolites between cells and tissues. Although their expression and localization have been established in most tissues, ocular tissues remain unknown. In this study, we used immunohistochemical analyses to investigate the expression and localization of BCAT enzymes in the normal eye tissues. As expected, BCATc was highly expressed in the neuronal cells of the retina, particularly in the ganglion cell layers, inner nuclear layer, and plexiform layer, with little to no expression in Müller cells. BCATc was also present in the cornea, retinal pigment epithelium (RPE), choroid, ciliary body, and iris but not in the lens. In contrast, BCATm was expressed across all ocular tissues, with strong expression in the Muller cells of the retina, the endothelial and epithelial layers of the cornea, the choroid and iris, and the epithelial cells at the lens's front. The extensive expression and distribution of BCAT isozymes in the ocular tissue, suggests that BCAA transamination is widespread in the eye, potentially aiding in metabolite transport between ocular tissues. The findings provide new insights into the physiological role of BCATs in the eye, particularly within the neuronal retina.


Subject(s)
Eye , Transaminases , Animals , Transaminases/metabolism , Rats , Male , Eye/metabolism , Eye/enzymology , Rats, Sprague-Dawley , Immunohistochemistry , Retina/metabolism , Retina/enzymology , Retina/cytology
2.
Saudi J Biol Sci ; 30(9): 103779, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37663397

ABSTRACT

Cerebrovascular disease is a threat to people with diabetes and hypertension. Diabetes can damage the brain by stimulating the renin-angiotensin system (RAS), leading to neurological deficits and brain strokes. Diabetes-induced components of the RAS, including angiotensin-converting enzyme (ACE), angiotensin-II (Ang-II), and angiotensin type 1 receptor (AT1R), have been linked to various neurological disorders in the brain. In this study, we investigated how diabetes and high blood pressure affected the regulation of these major RAS components in the frontal cortex of the rat brain. We dissected, homogenized, and processed the brain cortex tissues of control, streptozotocin-induced diabetic, spontaneously hypertensive (SHR), and streptozotocin-induced SHR rats for biochemical and Western blot analyses. We found that systolic blood pressure was elevated in SHR rats, but there was no significant difference between SHR and diabetic-SHR rats. In contrast to SHR rats, the heartbeat of diabetic SHR rats was low. Western blot analysis showed that the frontal cortexes of the brain expressed angiotensinogen, AT1R, and MAS receptor. There were no significant differences in angiotensinogen levels across the rat groups. However, the AT1R level was increased in diabetic and hypertensive rats compared to controls, whereas the MAS receptor was downregulated (p < 0.05). These findings suggest that RAS overactivation caused by diabetes may have negative consequences for the brain's cortex, leading to neurodegeneration and cognitive impairment.

3.
Front Neurosci ; 16: 938029, 2022.
Article in English | MEDLINE | ID: mdl-35911994

ABSTRACT

Diabetic retinopathy (DR) is one of the major complications of diabetic eye diseases, causing vision loss and blindness worldwide. The concept of diabetic retinopathy has evolved from microvascular disease into more complex neurovascular disorders. Early in the disease progression of diabetes, the neuronal and glial cells are compromised before any microvascular abnormalities clinically detected by the ophthalmoscopic examination. This implies understanding the pathophysiological mechanisms at the early stage of disease progression especially due to diabetes-induced metabolic alterations to damage the neural retina so that early intervention and treatments options can be identified to prevent and inhibit the progression of DR. Hyperglycemia has been widely considered the major contributor to the progression of the retinal damage, even though tight control of glucose does not seem to have a bigger effect on the incidence or progression of retinal damage that leads to DR. Emerging evidence suggests that besides diabetes-induced hyperglycemia, dyslipidemia and amino acid defects might be a major contributor to the progression of early neurovascular retinal damage. In this review, we have discussed recent advances in the alterations of key metabolites of carbohydrate, lipid, and amino acids and their implications for neurovascular damage in DR.

SELECTION OF CITATIONS
SEARCH DETAIL