Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
1.
World J Microbiol Biotechnol ; 40(10): 316, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39249607

ABSTRACT

Istamycins (ISMs) are 2-deoxyfortamine-containing aminoglycoside antibiotics (AGAs) produced by Streptomyces tenjimariensis ATCC 31603 with broad-spectrum bactericidal activities against most of the clinically relevant pathogens. Therefore, this study aimed to statistically optimize the environmental conditions affecting ISMs production using the central composite design (CCD). Both the effect of culture media composition and incubation time and agitation rate were studied as one factor at the time (OFAT). The results showed that both the aminoglycoside production medium and the protoplast regeneration medium gave the highest specific productivity. Results also showed that 6 days incubation time and 200 rpm agitation were optimum for their production. A CCD quadratic model of 17 runs was employed to test three key variables: initial pH, incubation temperature, and concentration of calcium carbonate. A significant statistical model was obtained including, an initial pH of 6.38, incubation temperature of 30 ˚C, and 5.3% CaCO3 concentration. This model was verified experimentally in the lab and resulted in a 31-fold increase as compared to the unoptimized conditions and a threefold increase to that generated by using the optimized culture media. To our knowledge, this is the first report about studying environmental conditions affecting ISM production as OFAT and through CCD design of the response surface methodology (RSM) employed for statistical optimization. In conclusion, the CCD design is an effective tool for optimizing ISMs at the shake flask level. However, the optimized conditions generated using the CCD model in this study should be scaled up in a fermenter for industrial production of ISMs by S. tenjimariensis ATCC 31603 considering the studied environmental conditions that significantly influence the production proces.


Subject(s)
Anti-Bacterial Agents , Culture Media , Fermentation , Streptomyces , Temperature , Streptomyces/metabolism , Streptomyces/growth & development , Culture Media/chemistry , Hydrogen-Ion Concentration , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/pharmacology , Calcium Carbonate/metabolism , Aminoglycosides/pharmacology , Industrial Microbiology , Bioreactors/microbiology
2.
Heliyon ; 10(16): e35890, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39262953

ABSTRACT

In remote areas, particularly in developing countries, there is a growing interest in off-grid solar PV systems for their ability to provide clean and affordable electricity. However, these systems often face limitations in powering essential amenities, including sports facilities, due to restricted capabilities and inadequate battery storage. To address these challenges and promote energy independence, this paper proposes an AI-enabled sports-system peer-to-peer (P2P) energy exchange network within the digital economy. This innovative system leverages AI to optimize energy distribution specifically for sports-related infrastructures, ensuring efficient use of solar power and improved energy availability for both recreational and community needs. The proposed P2P network operates on a three-part Internet of Things (IoT) framework, facilitating automatic energy sharing among interconnected systems. This approach not only enhances the performance of existing solar power setups but also ensures that energy demands for sports facilities are met effectively. Feasibility studies of this system reveal promising outcomes, including a 13.67% increase in community energy independence and a 12.20% reduction in overall energy consumption. The AI-powered sports-system network demonstrates its potential to support sustainable development and improve the quality of life in remote areas by integrating sports and energy needs within the digital economy context.

3.
AMB Express ; 14(1): 103, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285100

ABSTRACT

With the current spread of clinically relevant multidrug-resistant (MDR) pathogens, insufficient unearthing of new anti-infectives, and the high cost required for approval of new antimicrobial agents, a strong need for getting these agents via more economic and other alternative routes has emerged. With the discovery of the biosynthetic pathways of various antibiotics pointing out the role of each gene/protein in their antibiotic-producing strains, it became apparent that the biosynthetic gene clusters can be manipulated to produce modified antibiotics. This new approach is known as the combinatorial biosynthesis of new antibiotics which can be employed for obtaining novel derivatives of these valuable antibiotics using genetically modified antibiotic-producing strains (pathway engineering). In this review and based on the available biosynthetic gene clusters of the major aminoglycoside antibiotics (AGAs), the possible alterations or modifications that could be done by co-expression of certain gene(s) previously known to be involved in unique biosynthetic steps have been discussed. In this review defined novel examples of modified AGA using this approach were described and the information provided will act as a platform of researchers to get and develop new antibiotics by the antibiotic-producing bacterial strains such as Streptomyces, Micromonospora,…etc. This way, novel antibiotics with new biological activities could be isolated and used in the treatment of infectious diseases conferring resistance to existing antibiotics.

4.
Healthcare (Basel) ; 12(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39201233

ABSTRACT

BACKGROUND: Hypertension imposes a significant public health burden. An increased awareness of hypertension complications within a population can positively impact patient care and prevent complications. This study seeks to assess the awareness of hypertension complications among the population of Bisha in Saudi Arabia in 2020. METHODS: A cross-sectional study was conducted in 2020. A validated self-administered online-based questionnaire was sent to a sample of the adult population of Bisha to measure their awareness of hypertension complications. RESULTS: Almost three-quarters of the population (72.2%) were aware of hypertension complications. The awareness level was significantly higher among male participants (p < 0.001), those aged 31-40 years, those who were married, those working as police officers or in civilian jobs, those living in urban areas (p = 0.04), those with a university-level education (p = 0.03), those with a medium family income (SAR 5000-14,999) (p = 0.001), and those with a history of hospitalization because of causes other than hypertension (p = 0.05). Marital status was independently predictive of awareness (B = 0.851, Wald test = 12.179, p = 0.000) among the respondents. CONCLUSION: The study concludes that the awareness of hypertension complications among the Bisha population in Saudi Arabia was deemed acceptable. Factors such as marital status, age, gender, a family history of hypertension, the duration of hypertension, and medication adherence positively influenced this awareness and served as predictors of hypertensive awareness. The findings highlight the importance of health authorities in ensuring the widespread awareness of hypertension complications, particularly among hypertensive individuals.

5.
Poult Sci ; 103(9): 103880, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39094436

ABSTRACT

Antibiotic overuse in poultry feeds has disastrous implications; consequently, long-term alternatives must be developed. As a result, the current study aims to assess the impact of Aspergillus niger filtrate (ANF) high in organic acids grown on agro-industrial residue of faba bean (AIRFB) on quail diet, as well as their influence on bird productivity, digestion, carcass yield, blood chemistry, and intestinal microbiota. A total of 240 Japanese quails (aged 7 d) were used in this study, divided equally among 5 experimental groups with 48 quails each. Group 1 (G1) received a basal diet without any ANF, group 2 (G2) received a basal diet supplemented with 0.5 mL ANF/kg diet, group 3 (G3) received a basal diet supplemented with 1.0 mL ANF/kg diet, group 4 (G4) received a basal diet supplemented with 1.5 mL ANF/kg diet, and group 5 (G5) received a basal diet supplemented with 2 mL ANF/kg diet. The performance parameters were monitored at 1 to 3, 3 to 5, and 1 to 5 wk. Adding ANF increased body weight at 3 and 5 wk, as well as body weight gain at 1 to 3, 3 to 5, and 1 to 5 wk, compared to the control diet. The ANF fed quails had the highest feed conversion ratio compared to the control group. The addition of ANF to the quail diet had no effect on the weight of the carcass, gizzard, heart, liver, giblets, or dressing; however, it did lower triglycerides, low-density lipoprotein, and very low-density lipoprotein while increasing high-density lipoprotein levels. The quail groups that received ANF had enhanced immunological indices such as IgG, IgM, IgA, and lysozymes. It also increased the levels of superoxide dismutase and total antioxidant contents, as well as catalase, and digestive enzymes such as protease, amylase, and lipase. However, it lowered the blood MDA levels compared to control. It has been demonstrated that the total gut microbiota, Escherichia coli, total coliforms, and the population of Salmonella are all reduced in ANF-fed quails. Histological examination of ANF quails' liver and intestinal sections revealed normal hepatic parenchyma, typical leaf-like intestinal villi, and comparatively short and frequently free lumina. In conclusion, Japanese quail showed improvements in performance, digestive enzymes, antioxidant indices, immunity, and capacity to reduce intestinal pathogenic bacteria after consuming diet supplemented with ANF.


Subject(s)
Animal Feed , Antioxidants , Coturnix , Diet , Dietary Supplements , Gastrointestinal Microbiome , Vicia faba , Animals , Coturnix/physiology , Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Vicia faba/chemistry , Antioxidants/metabolism , Fermentation , Animal Nutritional Physiological Phenomena/drug effects , Aspergillus niger , Blood Chemical Analysis/veterinary , Male , Random Allocation
6.
Future Sci OA ; 10(1): 2389664, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39172714

ABSTRACT

Aim: To correlate hematological, inflammatory indicators and serological responses among COVID-19 patients to point out the significant biomarkers for disease management and prognosis.Materials & methods: Standard analytical and molecular methods were used to assess various inflammatory and serological Responses among COVID-19 patients (ICU- (n = 99) and non-ICU patients (n = 64) as compared with health control (n = 40).Results: Significant differences in the Hb, WBC, Lymphocyte count, CRP and serum ferritin (p < 0.05) were observed. Patients' IgM/IgG antibodies against SARS-CoV-2 were associated with increased CRP, LDH and serum ferritin levels.Conclusion: A significant association between serum IgG/IgM and ICU admission was observed. Although serum ferritin and LDH can offer information about the extent of inflammation, they are exclusive factors for ICU admission.


This study aimed to find the best biomarkers among COVID-19 patients to be used as indicators of patient eligibility for admission to the intensive care unit and for evaluating the disease complications and proper intervention before cases deteriorated. For the COVID-19 as compared with healthy individuals, results showed significant differences in many hematological indicators such as hemoglobin level, white blood cells and Lymphocyte count. Results also showed a strong correlation between certain serum antibody levels against COVID-19 and admission to intensive care unit.

7.
Diagn Microbiol Infect Dis ; 110(3): 116472, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39146634

ABSTRACT

Tuberculosis (T.B.) remains a prominent global cause of health challenges and death, exacerbated by drug-resistant strains such as multidrug-resistant tuberculosis MDR-TB and extensively drug-resistant tuberculosis XDR-TB. For an effective disease management strategy, it is crucial to understand the dynamics of T.B. infection and the impacts of treatment. In the present article, we employ AI-based machine learning techniques to investigate the immunity impact of medications. SEIPR epidemiological model is incorporated with MDR-TB for compartments susceptible to disease, exposed to risk, infected ones, preventive or resistant to initial treatment, and recovered or healed population. These masses' natural trends, effects, and interactions are formulated and described in the present study. Computations and stability analysis are conducted upon endemic and disease-free equilibria in the present model for their global scenario. Both numerical and AI-based nonlinear autoregressive exogenous NARX analyses are presented with incorporating immediate treatment and delay in treatment. This study shows that the active patients and MDR-TB, both strains, exist because of the absence of permanent immunity to T.B. Furthermore, patients who have recovered from tuberculosis may become susceptible again by losing their immunity and contributing to transmission again. This article aims to identify patterns and predictors of treatment success. The findings from this research can contribute to developing more effective tuberculosis interventions.


Subject(s)
Antitubercular Agents , Machine Learning , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Tuberculosis, Multidrug-Resistant/immunology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/drug therapy , Mycobacterium tuberculosis/immunology , Extensively Drug-Resistant Tuberculosis/immunology
8.
Sci Rep ; 14(1): 17645, 2024 07 31.
Article in English | MEDLINE | ID: mdl-39085250

ABSTRACT

The Middle East has witnessed a greater spread of infectious Dengue viruses, with serotype 2 (DENV-2) being the most prevalent form. Through this work, multi-epitope peptide vaccines against DENV-2 that target E and nonstructural (NS1) proteins were generated through an immunoinformatic approach. MHC class I and II and LBL epitopes among NS1 and envelope E proteins sequences were predicted and their antigenicity, toxicity, and allergenicity were investigated. Studies of the population coverage denoted the high prevalence of NS1 and envelope-E epitopes among different countries where DENV-2 endemic. Further, both the CTL and HTL epitopes retrieved from NS1 epitopes exhibited high conservancies' percentages with other DENV serotypes (1, 3, and 4). Three vaccine constructs were created and the expected immune responses for the constructs were estimated using C-IMMSIM and HADDOCK (against TLR 2,3,4,5, and 7). Molecular dynamics simulation for vaccine construct 2 with TLR4 denoted high binding affinity and stability of the construct with the receptor which might foretell favorable in vivo interaction and immune responses.


Subject(s)
Dengue Vaccines , Dengue Virus , Dengue , Serogroup , Vaccines, Subunit , Viral Nonstructural Proteins , Dengue Virus/immunology , Vaccines, Subunit/immunology , Dengue Vaccines/immunology , Humans , Dengue/prevention & control , Dengue/immunology , Dengue/virology , Viral Nonstructural Proteins/immunology , Computational Biology/methods , Epitopes, T-Lymphocyte/immunology , Viral Envelope Proteins/immunology , Molecular Dynamics Simulation , Epitopes/immunology , Epitopes/chemistry , Protein Subunit Vaccines
9.
Cell Biochem Biophys ; 82(3): 1845-1870, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38955925

ABSTRACT

Pulmonary toxicity is a serious side effect of some specific anticancer drugs. Bleomycin is a well-known anticancer drug that triggers severe reactions in the lungs. It is an approved drug that may be prescribed for the treatment of testicular cancers, Hodgkin's and non-Hodgkin's lymphomas, ovarian cancer, head and neck cancers, and cervical cancer. A large number of experimental studies and clinical findings show that bleomycin can concentrate in lung tissue, leading to massive oxidative stress, alveolar epithelial cell death, the proliferation of fibroblasts, and finally the infiltration of immune cells. Chronic release of pro-inflammatory and pro-fibrotic molecules by immune cells and fibroblasts leads to pneumonitis and fibrosis. Both fibrosis and pneumonitis are serious concerns for patients who receive bleomycin and may lead to death. Therefore, the management of lung toxicity following cancer therapy with bleomycin is a critical issue. This review explains the cellular and molecular mechanisms of pulmonary injury following treatment with bleomycin. Furthermore, we review therapeutic targets and possible promising strategies for ameliorating bleomycin-induced lung injury.


Subject(s)
Bleomycin , Pulmonary Fibrosis , Bleomycin/adverse effects , Humans , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/drug therapy , Animals , Oxidative Stress/drug effects , Lung/pathology , Lung/drug effects , Antibiotics, Antineoplastic/adverse effects
10.
Infect Drug Resist ; 17: 2249-2260, 2024.
Article in English | MEDLINE | ID: mdl-38854781

ABSTRACT

Objective: Owing to the rising incidence of multidrug-resistant organisms (MDRO) and the high mortality rates associated with such bacterial infections post-hematopoietic stem cell transplantation (HSCT), we investigated the MDRO colonization rate prior to transplantation using an active surveillance approach and determined its impact on subsequent infection during the pre-engraftment period. Methods: A single-center observational study was conducted, and surveillance cultures from multiple body sites, including the rectum, nasal cavity, and groin, were performed at admission to determine MDRO colonization. Serological tests were used to detect certain viruses and toxoplasmosis before HSCT. Results: In the pre-transplant setting, 59 MDRO were recovered from the 40 HSCT recipients. Of the 59 isolates recovered from one or more body sites, 29 were positive for methicillin-resistant Staphylococcus aureus (MRSA), 7 for carbapenem-resistant Enterobacterales (CRE), and 23 were positive for extended-spectrum ß-lactamase (ESBLs). Serological assessment before HSCT revealed active or reactivation of latent infection with cytomegalovirus (7.5%), Epstein-Barr virus (EBV; 5%), and Toxoplasma gondii (2.5%) among HSCT patients. In terms of factors associated with pre-engraftment infections, the type of transplant (p=0.04) was statistically significant, whereas other factors, such as age, sex, and underlying conditions, were not. In post-transplant settings, bloodstream infections (BSIs) were documented in 2 allogeneic HSCT patients (5%), and the isolated microorganisms were ESBL-producing E. coli and non-MDR Acinetobacter baumannii. Conclusion: Active screening cultures are a helpful tool for identifying patients colonized by MDRO or relevant viruses before HSCT, and for predicting those at risk of developing subsequent pre-engraftment infections. Additionally, active screening may aid in predicting those who are likely to develop subsequent pre-engraftment infections Our findings highlight the importance of pre-transplant screening for high-priority multidrug-resistant pathogens and the application of infection control interventions after HSCT.

11.
AMB Express ; 14(1): 52, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704474

ABSTRACT

Multidrug-resistant (MDR) pathogens are a rising global health worry that imposes an urgent need for the discovery of novel antibiotics particularly those of natural origin. In this context, we aimed to use the metagenomic nanopore sequence analysis of soil microbiota coupled with the conventional phenotypic screening and genomic analysis for identifying the antimicrobial metabolites produced by promising soil isolate(s). In this study, whole metagenome analysis of the soil sample(s) was performed using MinION™ (Oxford Nanopore Technologies). Aligning and analysis of sequences for probable secondary metabolite gene clusters were extracted and analyzed using the antiSMASH version 2 and DeepBGC. Results of the metagenomic analysis showed the most abundant taxa were Bifidobacterium, Burkholderia, and Nocardiaceae (99.21%, followed by Sphingomonadaceae (82.03%) and B. haynesii (34%). Phenotypic screening of the respective soil samples has resulted in a promising Bacillus isolate that exhibited broad-spectrum antibacterial activities against various MDR pathogens. It was identified using microscopical, cultural, and molecular methods as Bacillus (B.) haynesii isolate MZ922052. The secondary metabolite gene analysis revealed the conservation of seven biosynthetic gene clusters of antibacterial metabolites namely, siderophore lichenicidin VK21-A1/A2 (95% identity), lichenysin (100%), fengycin (53%), terpenes (100%), bacteriocin (100%), Lasso peptide (95%) and bacillibactin (53%). In conclusion, metagenomic nanopore sequence analysis of soil samples coupled with conventional screening helped identify B. haynesii isolate MZ922052 harboring seven biosynthetic gene clusters of promising antimicrobial metabolites. This is the first report for identifying the bacteriocin, lichenysin, and fengycin biosynthetic gene clusters in B. haynesii MZ922052.

12.
BMC Microbiol ; 24(1): 164, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745145

ABSTRACT

BACKGROUND: Multidrug-resistant (MDR) P. aeruginosa is a rising public health concern, challenging the treatment of such a ubiquitous pathogen with monotherapeutic anti-pseudomonal agents. Worryingly, its genome plasticity contributes to the emergence of P. aeruginosa expressing different resistant phenotypes and is now responsible for notable epidemics within hospital settings. Considering this, we aimed to evaluate the synergistic combination of fortimicin with other traditional anti-pseudomonal agents and to analyze the resistome of pan-drug resistant (PDR) isolate. METHODS: Standard methods were used for analyzing the antimicrobial susceptibility tests. The checkerboard technique was used for the in vitro assessment of fortimicin antibiotic combinations against 51 MDR P. aeruginosa and whole genome sequencing was used to determine the resistome of PDR isolate. RESULTS: Out of 51 MDR P. aeruginosa, the highest synergistic effect was recorded for a combination of fortimicin with ß-lactam group as meropenem, ceftazidime, and aztreonam at 71%, 59% and 43%, respectively. Of note, 56.8%, 39.2%, and 37.2% of the tested MDR isolates that had synergistic effects were also resistant to meropenem, ceftazidime, and aztreonam, respectively. The highest additive effects were recorded for combining fortimicin with amikacin (69%) and cefepime (44%) against MDR P. aeruginosa. Resistome analysis of the PDR isolate reflected its association with the antibiotic resistance phenotype. It ensured the presence of a wide variety of antibiotic-resistant genes (ß-lactamases, aminoglycosides modifying enzymes, and efflux pump), rendering the isolate resistant to all clinically relevant anti-pseudomonal agents. CONCLUSION: Fortimicin in combination with classical anti-pseudomonal agents had shown promising synergistic activity against MDR P. aeruginosa. Resistome profiling of PDR P. aeruginosa enhanced the rapid identification of antibiotic resistance genes that are likely linked to the appearance of this resistant phenotype and may pave the way to tackle antimicrobial resistance issues shortly.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Drug Synergism , Genome, Bacterial , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Whole Genome Sequencing , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Humans , Genome, Bacterial/genetics , Pseudomonas Infections/microbiology
13.
Cell Biochem Biophys ; 82(2): 593-607, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750383

ABSTRACT

The expression of the nuclear paraspeckle assembly transcript 1 (NEAT1), as a well-known long non-coding RNA (lncRNA), is often upregulated in varied types of cancers and associated with poor survival outcomes in patients suffering from tumors. NEAT1 promotes the tumors growth by influencing the various genes' expression profile that regulate various aspects of tumor cell behavior, in particular tumor growth, metastasis and drug resistance. This suggests that NEAT1 are capable of serving as a new diagnostic biomarker and target for therapeutic intervention. Through interrelation with enhancer of zeste homolog 2 (EZH2), NEAT1 acts as a scaffold RNA molecule, and thus regulating the expression EZH2-associated genes. Additionally, by perform as miRNA sponge, it constrains suppressing the interactions between miRNAs-mediated degradation of target mRNAs. In light of this, NEAT1 inhibition by small interfering RNA (siRNA) hampers tumorgenesis. We summarize recent findings about the expression, biological functions, and regulatory process of NEAT1 in human tumors. It specifically emphasizes the clinical significance of NEAT1 as a novel diagnostic biomarker and a promising therapeutic mark for many types of cancers.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Neoplasms , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Neoplasm Metastasis , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , RNA, Small Interfering/metabolism , Carcinogenesis/genetics
14.
Cell Biochem Funct ; 42(4): e4029, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38773914

ABSTRACT

Mesenchymal stem cell-derived exosomes (MSC-Exos) are emerging as remarkable agents in the field of immunomodulation with vast potential for diagnosing and treating various diseases, including cancer and autoimmune disorders. These tiny vesicles are laden with a diverse cargo encompassing proteins, nucleic acids, lipids, and bioactive molecules, offering a wealth of biomarkers and therapeutic options. MSC-Exos exhibit their immunomodulatory prowess by skillfully regulating pattern-recognition receptors (PRRs). They conduct a symphony of immunological responses, modulating B-cell activities, polarizing macrophages toward anti-inflammatory phenotypes, and fine-tuning T-cell activity. These interactions have profound implications for precision medicine, cancer immunotherapy, autoimmune disease management, biomarker discovery, and regulatory approvals. MSC-Exos promises to usher in a new era of tailored therapies, personalized diagnostics, and more effective treatments for various medical conditions. As research advances, their transformative potential in healthcare becomes increasingly evident.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Receptors, Pattern Recognition , Humans , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/cytology , Receptors, Pattern Recognition/metabolism , Animals , Immunomodulation
15.
Cell Biochem Funct ; 42(3): e4009, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38597217

ABSTRACT

Atypical chemokine receptor 4 (ACKR4), also known as CCX-CKR, is a member of the chemokine receptor family that lacks typical G protein signaling activity. Instead, ACKR4 functions as a scavenger receptor that can bind and internalize a wide range of chemokines, influencing their availability and activity in the body. ACKR4 is involved in various physiological processes, such as immune cell trafficking and the development of thymus, spleen, and lymph nodes. Moreover, ACKR4 has been implicated in several pathological conditions, including cancer, heart and lung diseases. In cancer, ACKR4 plays a complex role, acting as a tumor suppressor or promoter depending on the type of cancer and the stage of the disease. For instance, ACKR4 may inhibit the growth and metastasis of breast cancer, but it may also promote the progression of hepatocellular carcinoma and gastric cancer. In inflammatory situations, ACKR4 has been found to modulate the recruitment and activation of immune cells, contributing to the pathogenesis of diseases such as myocardial infraction and pulmonary sarcoidosis. The study of ACKR4 is still ongoing, and further research is needed to fully understand its role in different physiological and pathological contexts. Nonetheless, ACKR4 represents a promising target for the development of novel therapeutic strategies for various diseases.


Subject(s)
Breast Neoplasms , Signal Transduction , Female , Humans
16.
Acta Haematol ; : 1-14, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565097

ABSTRACT

BACKGROUND: Hemophilia A presents a significant health challenge in the Gulf region, where it has an especially high prevalence. There are several unmet needs associated with the management of hemophilia A in the region. The aim of this manuscript was to contextualize unmet management needs, provide recommendations to optimize care, and specify requirements for the establishment of gene therapy centers in the region. SUMMARY: An expert panel was assembled comprising ten clinical hematologists from Kuwait, Oman, Saudi Arabia, and the UAE. The Delphi methodology was used to obtain a consensus on statements relating to several aspects of hemophilia A. A consensus was reached for all statements by means of an online, anonymized voting system. The consensus statements pertain to screening and diagnosis, treatment approaches, and requirements for the implementation of gene therapy. KEY MESSAGES: There are significant challenges that hinder the optimal management of hemophilia A in the Gulf region. The consensus statements presented provide specific recommendations to improve diagnostic and treatment approaches, promote multidisciplinary care, and optimize regional data generation and reporting. These statements also delineate the requirements for the establishment of gene therapy centers for hemophilia A in the region.

17.
Chemosphere ; 358: 142086, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670510

ABSTRACT

Furan is generated in a wide array of heat-treated foods through thermal degradation, leading to severe impairments in the male reproductive system. The main objective of this study was to investigate the potential of pomegranate peel extract (PGPE) in mitigating testicular dysfunctions induced by furan. Male rats were categorized into four groups: control/untreated, PGPE, furan, and PGPE + furan group. The study results revealed that furan-treated rats exhibited significantly elevated aminotransferase and phosphatase activity, and also generated increased oxidative stress, and reduced antioxidative stress protein activity. Additionally, protein content levels (ALT, AST, ALP, and ACP) and activities of steroidogenic Leydig cell hydroxysteroid dehydrogenase (3ß-HSD and 17ß-HSD) enzymes were significantly decreased. Significant variations in testicular parameters, apoptotic genes (Bcl-2, P53, and Caspase3), inflammatory and anti-inflammatory cytokines (IL1ß, IL10), male sex hormones follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, and sperm quality were also observed. Furthermore, testicular histological abnormalities were confirmed by biochemical and molecular modifications. Notably, PGPE pre-treated furan-intoxicated animals exhibited significant improvements in most of the assessed parameters compared to furan-treated groups. In conclusion, PGPE presents essential preventive measures and a novel pharmacological potential therapy against furan-induced testicular injury.


Subject(s)
Apoptosis , Furans , Oxidative Stress , Plant Extracts , Pomegranate , Testis , Male , Animals , Oxidative Stress/drug effects , Testis/drug effects , Testis/metabolism , Testis/pathology , Rats , Plant Extracts/pharmacology , Plant Extracts/chemistry , Apoptosis/drug effects , Pomegranate/chemistry , Furans/pharmacology , Testosterone/metabolism , Luteinizing Hormone , 17-Hydroxysteroid Dehydrogenases/metabolism , Follicle Stimulating Hormone , Leydig Cells/drug effects , Leydig Cells/metabolism , Antioxidants/metabolism
18.
Med Oncol ; 41(6): 127, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656354

ABSTRACT

Chimeric Antigen Receptor (CAR) based therapies are becoming increasingly important in treating patients. CAR-T cells have been shown to be highly effective in the treatment of hematological malignancies. However, harmful therapeutic barriers have been identified, such as the potential for graft-versus-host disease (GVHD), neurotoxicity, and cytokine release syndrome (CRS). As a result, CAR NK-cell therapy is expected to be a new therapeutic option. NK cells act as cytotoxic lymphocytes, supporting the innate immune response against autoimmune diseases and cancer cells by precisely detecting and eliminating malignant cells. Genetic modification of these cells provides a dual approach to the treatment of AD and cancer. It can be used through both CAR-independent and CAR-dependent mechanisms. The use of CAR-based cell therapies has been successful in treating cancer patients, leading to further investigation of this innovative treatment for alternative diseases, including AD. The complementary roles of CAR T and CAR NK cells have stimulated exploration in this area. Our study examines the latest research on the therapeutic effectiveness of these cells in treating both cancer and ADs.


Subject(s)
Autoimmune Diseases , Immunotherapy, Adoptive , Killer Cells, Natural , Neoplasms , Receptors, Chimeric Antigen , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/transplantation , Receptors, Chimeric Antigen/immunology , Neoplasms/therapy , Neoplasms/immunology , Autoimmune Diseases/therapy , Autoimmune Diseases/immunology , Immunotherapy, Adoptive/methods , Animals
19.
Int. j. morphol ; 42(2)abr. 2024.
Article in English | LILACS | ID: biblio-1558139

ABSTRACT

SUMMARY: The response of the immune system to harmful stimuli leads to inflammation, and the adverse effects of the toxic hepatitis chemical, thioacetamide (TAA) on the human body are well documented. This article investigated the degree of protection provided by the combined pleotropic drug, metformin (Met) and the plant polyphenolic and the antiinflammatory compound, resveratrol (Res) on liver tissue exposed to TAA possibly via the inhibition of the inflammatory cytokine, tumor necrosis factor-α (TNF-α) / mammalian target of rapamycin (mTOR) axis-mediated liver fibrosis, as well as amelioration of profibrotic gene and protein expression. Rats were either given TAA (200 mg/kg via intraperitoneal injection) for 8 weeks beginning at the third week (experimental group) or received during the first two weeks of the experiment combined doses of metformin (200 mg/kg) and resveratrol (20 mg/kg) and continued receiving these agents and TAA until experiment completion at week 10 (treated group). A considerable damage to hepatic tissue in the experimental rats was observed as revealed by tissue collagen deposition in the portal area of the liver and a substantial increase (p<0.0001) in hepatic levels of the inflammatory marker, tumor necrosis factor-α (TNF-α), as well as blood levels of hepatocellular injury biomarkers, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). TAA also augmented hepatic tissue levels of the signalling molecule that promotes liver fibrosis (mTOR), and profibrogenic markers; alpha-smooth muscle actin (α-SMA) protein, tissue inhibitor of metalloproteinases-1 (TIMP-1) mRNA, and matrix metalloproteinase-9 (MMP-9) mRNA. All these parameters were protected (p≤0.0016) by Met+Res. In addition, a significant correlation was detected between liver fibrosis score and inflammation, liver injury enzymes, mTOR, and profibrogenesis markers. Thus, these findings suggest that Met+Res effectively protect the liver against damage induced by thioacetamide in association with the downregulation of the TNF-α/mTOR/fibrosis axis.


La respuesta del sistema inmunológico a estímulos dañinos conduce a la inflamación y los efectos adversos de la tioacetamida (TAA), una sustancia química tóxica para el hígado, están bien documentadas. Este artículo investigó el grado de protección proporcionado por el fármaco pleotrópico combinado metformina (Met), el polifenólico vegetal y el compuesto antiinflamatorio resveratrol (Res) en el tejido hepático expuesto a TAA, posiblemente a través de la inhibición de la citoquina inflamatoria, factor de necrosis tumoral α (TNF-α)/objetivo de la fibrosis hepática mediada por el eje de rapamicina (mTOR), así como mejora de la expresión de genes y proteínas profibróticas. Las ratas recibieron TAA (200 mg/kg mediante inyección intraperitoneal) durante 8 semanas a partir de la tercera semana (grupo experimental) o recibieron durante las dos primeras semanas del experimento dosis combinadas de metformina (200 mg/kg) y resveratrol (20 mg/kg) y continuaron recibiendo estos agentes y TAA hasta completar el experimento en la semana 10 (grupo tratado). Se observó un daño considerable al tejido hepático en las ratas experimentales, como lo revela el depósito de colágeno tisular en el área portal del hígado y un aumento sustancial (p<0,0001) en los niveles hepáticos del marcador inflamatorio, el factor de necrosis tumoral-α (TNF- α), así como los niveles sanguíneos de biomarcadores de lesión hepatocelular, alanina aminotransferasa (ALT) y aspartato aminotransferasa (AST). TAA también aumentó los niveles en el tejido hepático de la molécula de señalización que promueve la fibrosis hepática (mTOR) y marcadores profibrogénicos; proteína actina del músculo liso alfa (α- SMA), inhibidor tisular de las metaloproteinasas-1 (TIMP-1) mRNA y matriz metaloproteinasa-9 (MMP-9) mRNA. Todos estos parámetros fueron protegidos (p≤0.0016) por Met+Res. Además, se detectó una correlación significativa entre la puntuación de fibrosis hepática y la inflamación, las enzimas de lesión hepática, mTOR y los marcadores de profibrogénesis. Por lo tanto, estos hallazgos sugieren que Met+Res protege eficazmente el hígado contra el daño inducido por la tioacetamida en asociación con la regulación negativa del eje TNF-α/mTOR/fibrosis.


Subject(s)
Animals , Rats , Thioacetamide/toxicity , Resveratrol/pharmacology , Liver Cirrhosis/drug therapy , Metformin/pharmacology , Immunohistochemistry , Cytokines/antagonists & inhibitors , Tumor Necrosis Factor-alpha , Tissue Inhibitor of Metalloproteinase-1 , Sirolimus , TOR Serine-Threonine Kinases , Inflammation , Liver/drug effects , Liver Cirrhosis/chemically induced
20.
Pathol Res Pract ; 256: 155266, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38554489

ABSTRACT

Hepatic tumors present a formidable challenge in cancer therapeutics, necessitating the exploration of novel treatment strategies. In recent years, targeting the immune system has attracted interest to augment existing therapeutic efficacy. The immune system in hepatic tumors includes numerous cells with diverse actions. CD8+ T lymphocytes, T helper 1 (Th1) CD4+ T lymphocytes, alternative M1 macrophages, and natural killer (NK) cells provide the antitumor immunity. However, Foxp3+ regulatory CD4+ T cells (Tregs), M2-like tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) are the key immune inhibitor cells. Tumor stroma can also affect these interactions. Targeting these cells and their secreted molecules is intriguing for eliminating malignant cells. The current review provides a synopsis of the immune system components involved in hepatic tumor expansion and highlights the molecular and cellular pathways that can be targeted for therapeutic intervention. It also overviews the diverse range of drugs, natural products, immunotherapy drugs, and nanoparticles that have been investigated to manipulate immune responses and bolster antitumor immunity. The review also addresses the potential advantages and challenges associated with these approaches.


Subject(s)
Biological Products , Liver Neoplasms , Nanoparticles , Neoplasms , Humans , Biological Products/therapeutic use , Biological Products/metabolism , Neoplasms/pathology , Immunotherapy , Macrophages/pathology , Liver Neoplasms/pathology , Nanoparticles/therapeutic use , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL