Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Eng Comput Biol ; 14: 11795972221138470, 2023.
Article in English | MEDLINE | ID: mdl-37533697

ABSTRACT

Automated medical diagnosis has become crucial and significantly supports medical doctors. Thus, there is a demand for inventing deep learning (DL) and convolutional networks for analyzing medical images. Dermatology, in particular, is one of the domains that was recently targeted by AI specialists to introduce new DL algorithms or enhance convolutional neural network (CNN) architectures. A significantly high proportion of studies in the field are concerned with skin cancer, whereas other dermatological disorders are still limited. In this work, we examined the performance of 6 CNN architectures named VGG16, EfficientNet, InceptionV3, MobileNet, NasNet, and ResNet50 for the top 3 dermatological disorders that frequently appear in the Middle East. An Image filtering and denoising were imposed in this work to enhance image quality and increase architecture performance. Experimental results revealed that MobileNet achieved the highest performance and accuracy among the CNN architectures and can classify disorder with high performance (95.7% accuracy). Future scope will focus more on proposing a new methodology for deep-based classification. In addition, we will expand the dataset for more images that consider new disorders and variations.

2.
Diagnostics (Basel) ; 13(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36766490

ABSTRACT

Skin cancer develops due to the unusual growth of skin cells. Early detection is critical for the recognition of multiclass pigmented skin lesions (PSLs). At an early stage, the manual work by ophthalmologists takes time to recognize the PSLs. Therefore, several "computer-aided diagnosis (CAD)" systems are developed by using image processing, machine learning (ML), and deep learning (DL) techniques. Deep-CNN models outperformed traditional ML approaches in extracting complex features from PSLs. In this study, a special transfer learning (TL)-based CNN model is suggested for the diagnosis of seven classes of PSLs. A novel approach (Light-Dermo) is developed that is based on a lightweight CNN model and applies the channelwise attention (CA) mechanism with a focus on computational efficiency. The ShuffleNet architecture is chosen as the backbone, and squeeze-and-excitation (SE) blocks are incorporated as the technique to enhance the original ShuffleNet architecture. Initially, an accessible dataset with 14,000 images of PSLs from seven classes is used to validate the Light-Dermo model. To increase the size of the dataset and control its imbalance, we have applied data augmentation techniques to seven classes of PSLs. By applying this technique, we collected 28,000 images from the HAM10000, ISIS-2019, and ISIC-2020 datasets. The outcomes of the experiments show that the suggested approach outperforms compared techniques in many cases. The most accurately trained model has an accuracy of 99.14%, a specificity of 98.20%, a sensitivity of 97.45%, and an F1-score of 98.1%, with fewer parameters compared to state-of-the-art DL models. The experimental results show that Light-Dermo assists the dermatologist in the better diagnosis of PSLs. The Light-Dermo code is available to the public on GitHub so that researchers can use it and improve it.

3.
Math Biosci Eng ; 19(8): 7586-7605, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35801437

ABSTRACT

By upgrading medical facilities with internet of things (IoT), early researchers have produced positive results. Isolated COVID-19 patients in remote areas, where patients are not able to approach a doctor for the detection of routine parameters, are now getting feasible. The doctors and families will be able to track the patient's health outside of the hospital utilizing sensors, cloud storage, data transmission, and IoT mobile applications. The main purpose of the proposed research-based project is to develop a remote health surveillance system utilizing local sensors. The proposed system also provides GSM messages, live location, and send email to the doctor during emergency conditions. Based on artificial intelligence (AI), a feedback action is taken in case of the absence of a doctor, where an automatic injection system injects the dose into the patient's body during an emergency. The significant parameters catering to our project are limited to ECG monitoring, SpO2 level detection, body temperature, and pulse rate measurement. Some parameters will be remotely shown to the doctor via the Blynk application in case of any abrupt change in the parameters. If the doctor is not available, the IoT system will send the location to the emergency team and relatives. In severe conditions, an AI-based system will analyze the parameters and injects the dose.


Subject(s)
COVID-19 , Mobile Applications , Artificial Intelligence , COVID-19/diagnosis , COVID-19/epidemiology , Cloud Computing , Electrocardiography , Humans
4.
Sensors (Basel) ; 22(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408104

ABSTRACT

Automatic tracking and quantification of exercises not only helps in motivating people but also contributes towards improving health conditions. Weight training, in addition to aerobic exercises, is an important component of a balanced exercise program. Excellent trackers are available for aerobic exercises but, in contrast, tracking free weight exercises is still performed manually. This study presents the details of our data acquisition effort using a single chest-mounted tri-axial accelerometer, followed by a novel method for the recognition of a wide range of gym-based free weight exercises. Exercises are recognized using LSTM neural networks and the reported results confirm the feasibility of the proposed approach. We train and test several LSTM-based gym exercise recognition models. More specifically, in one set of experiments, we experiment with separate models, one for each muscle group. In another experiment, we develop a universal model for all exercises. We believe that the promising results will potentially contribute to the vision of an automated system for comprehensive monitoring and analysis of gym-based exercises and create a new experience for exercising by freeing the exerciser from manual record-keeping.


Subject(s)
Exercise Therapy , Exercise , Exercise/physiology , Humans , Neural Networks, Computer
5.
Math Biosci Eng ; 19(1): 456-472, 2022 01.
Article in English | MEDLINE | ID: mdl-34902999

ABSTRACT

Rehabilitation engineering is playing a more vital role in the field of healthcare for humanity. It is providing many assistive devices to diplegia patients (The patients whose conditions are weak in terms of muscle mobility on both sides of the body and their paralyzing effects are high either in the arms or in the legs). Therefore, in order to rehabilitate such types of patients, an intelligent healthcare system is proposed in this research. The electric sticks and chairs are also a type of this system which was used previously to facilitate the diplegia patients. It is worth noting that a voice recognition system along with wireless control feature has been integrated intelligently in the proposed healthcare system in order to replace the common and conventional assistive tools for diplegia patients. These features will make the proposed system more user friendly, convenient and comfortable. The voice recognition system has been used for movements of system in any desired direction along with the ultrasonic sensor and light detecting technology. These sensors detect the obstacles and low light environment intelligently during the movement of the wheelchair and then take the necessary actions accordingly.


Subject(s)
Muscle Weakness , Paralysis , Self-Help Devices , Wireless Technology , Delivery of Health Care , Humans , Movement , Muscle Weakness/rehabilitation , Paralysis/rehabilitation , Wheelchairs
SELECTION OF CITATIONS
SEARCH DETAIL
...