Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958502

ABSTRACT

Nonmelanoma skin cancers (NMSC) are the most common skin cancers, and about 5.4 million people are diagnosed each year in the United States. A newly developed T-lymphokine-activated killer cell-originated protein kinase (TOPK) inhibitor, HI-TOPK-032, is effective in suppressing colon cancer cell growth, inducing the apoptosis of colon cancer cells and ultraviolet (UV) light-induced squamous cell carcinoma (SCC). This study aimed to investigate the physicochemical properties, permeation behavior, and cytotoxicity potential of HI-TOPK-032 prior to the development of a suitable topical formulation for targeted skin drug delivery. Techniques such as scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, differential scanning calorimetry (DSC), hot-stage microscopy (HSM), X-ray powder diffraction (XRPD), Karl Fisher (KF) coulometric titration, Raman spectrometry, confocal Raman microscopy (CRM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and Fourier transform infrared microscopy were used to characterize HI-TOPK-032. The dose effect of HI-TOPK-032 on in vitro cell viability was evaluated using a 2D cell culture of the human skin keratinocyte cell line (HaCaT) and primary normal human epidermal keratinocytes (NHEKs). Transepithelial electrical resistance (TEER) at the air-liquid interface as a function of dose and time was measured on the HaCAT human skin cell line. The membrane permeation behavior of HI-TOPK-032 was tested using the Strat-M® synthetic biomimetic membrane with an in vitro Franz cell diffusion system. The physicochemical evaluation results confirmed the amorphous nature of the drug and the homogeneity of the sample with all characteristic chemical peaks. The in vitro cell viability assay results confirmed 100% cell viability up to 10 µM of HI-TOPK-032. Further, a rapid, specific, precise, and validated reverse phase-high performance liquid chromatography (RP-HPLC) method for the quantitative estimation of HI-TOPK-032 was developed. This is the first systematic and comprehensive characterization of HI-TOPK-032 and a report of these findings.


Subject(s)
Colonic Neoplasms , Skin Neoplasms , Humans , Mitogen-Activated Protein Kinase Kinases/metabolism , Skin Neoplasms/pathology , Colonic Neoplasms/pathology , Cell Culture Techniques
2.
Int J Mol Sci ; 24(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37834455

ABSTRACT

Pain is the most significant impairment and debilitating challenge for patients with bone metastasis. Therefore, the primary objective of current therapy is to mitigate and prevent the persistence of pain. Thus, cancer-induced bone pain is described as a multifaceted form of discomfort encompassing both inflammatory and neuropathic elements. We have developed a novel non-addictive pain therapeutic, PNA6, that is a derivative of the peptide Angiotensin-(1-7) and binds the Mas receptor to decrease inflammation-related cancer pain. In the present study, we provide evidence that PNA6 attenuates inflammatory, chemotherapy-induced peripheral neuropathy (CIPN) and cancer pain confined to the long bones, exhibiting longer-lasting efficacious therapeutic effects. PNA6, Asp-Arg-Val-Tyr-Ile-His-Ser-(O-ß-Lact)-amide, was successfully synthesized using solid phase peptide synthesis (SPPS). PNA6 significantly reversed inflammatory pain induced by 2% carrageenan in mice. A second murine model of platinum drug-induced painful peripheral neuropathy was established using oxaliplatin. Mice in the oxaliplatin-vehicle treatment groups demonstrated significant mechanical allodynia compared to the oxaliplatin-PNA6 treatment group mice. In a third study modeling a complex pain state, E0771 breast adenocarcinoma cells were implanted into the femur of female C57BL/6J wild-type mice to induce cancer-induced bone pain (CIBP). Both acute and chronic dosing of PNA6 significantly reduced the spontaneous pain behaviors associated with CIBP. These data suggest that PNA6 is a viable lead candidate for treating chronic inflammatory and complex neuropathic pain.


Subject(s)
Antineoplastic Agents , Bone Neoplasms , Breast Neoplasms , Cancer Pain , Neuralgia , Humans , Mice , Female , Animals , Oxaliplatin/adverse effects , Cancer Pain/drug therapy , Disease Models, Animal , Mice, Inbred C57BL , Neuralgia/chemically induced , Neuralgia/drug therapy , Neuralgia/complications , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/complications , Breast Neoplasms/drug therapy , Bone Neoplasms/complications , Bone Neoplasms/drug therapy , Antineoplastic Agents/adverse effects
3.
Pharmaceutics ; 14(9)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36145618

ABSTRACT

Central nervous system (CNS) disorders, such as psychiatric disorders, neurodegeneration, chronic pain, stroke, brain tumor, spinal cord injury, and many other CNS diseases, would hugely benefit from specific and potent peptide pharmaceuticals and their low inherent toxicity. The delivery of peptides to the brain is challenging due to their low metabolic stability, which decreases their duration of action, poor penetration of the blood-brain barrier (BBB), and their incompatibility with oral administration, typically resulting in the need for parenteral administration. These challenges limit peptides' clinical application and explain the interest in alternative routes of peptide administration, particularly nose-to-brain (N-to-B) delivery, which allows protein and peptide drugs to reach the brain noninvasively. N-to-B delivery can be a convenient method for rapidly targeting the CNS, bypassing the BBB, and minimizing systemic exposure; the olfactory and trigeminal nerves provide a unique pathway to the brain and the external environment. This review highlights the intranasal delivery of drugs, focusing on peptide delivery, illustrating various clinical applications, nasal delivery devices, and the scope and limitations of this approach.

4.
Pharmaceutics ; 13(7)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34371768

ABSTRACT

Coronavirus disease-2019 (COVID-19) is caused by coronavirus-2 (SARS-CoV-2) and has produced a global pandemic. As of 22 June 2021, 178 million people have been affected worldwide, and 3.87 million people have died from COVID-19. According to the Centers for Disease Control and Prevention (CDC) of the United States, COVID-19 virus is primarily transmitted between people through respiratory droplets and contact routes. Since the location of initial infection and disease progression is primarily through the lungs, the inhalation delivery of drugs directly to the lungs may be the most appropriate route of administration for treating COVID-19. This review article aims to present possible inhalation therapeutics and vaccines for the treatment of COVID-19 symptoms. This review covers the comparison between SARS-CoV-2 and other coronaviruses such as SARS-CoV/MERS, inhalation therapeutics for the treatment of COVID-19 symptoms, and vaccines for preventing infection, as well as the current clinical status of inhaled therapeutics and vaccines.

5.
Pharmaceutics ; 13(8)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34452239

ABSTRACT

The peptide hormone Angiotensin (1-7), Ang (1-7) or (Asp-Arg-Val-Tyr-Ile-His-Pro), is an essential component of the renin-angiotensin system (RAS) peripherally and is an agonist of the Mas receptor centrally. Activation of this receptor in the CNS stimulates various biological activities that make the Ang (1-7)/MAS axis a novel therapeutic approach for the treatment of many diseases. The related O-linked glycopeptide, Asp-Arg-Val-Tyr-Ile-His-Ser-(O-ß-D-Glc)-amide (PNA5), is a biousian revision of the native peptide hormone Ang (1-7) and shows enhanced stability in vivo and greater levels of brain penetration. We have synthesized the native Ang (1-7) peptide and the glycopeptide, PNA5, and have formulated them for targeted respiratory delivery as inhalable dry powders. Solid phase peptide synthesis (SPPS) successfully produced Ang (1-7) and PNA5. Measurements of solubility and lipophilicity of raw Ang (1-7) and raw PNA5 using experimental and computational approaches confirmed that both the peptide and glycopeptide have high-water solubility and are amphipathic. Advanced organic solution spray drying was used to engineer the particles and produce spray-dried powders (SD) of both the peptide and the glycopeptide, as well as co-spray-dried powders (co-SD) with the non-reducing sugar and pharmaceutical excipient, trehalose. The native peptide, glycopeptide, SD, and co-SD powders were comprehensively characterized, and exhibited distinct glass transitions (Tg) consistent with the amorphous glassy state formation with Tgs that are compatible with use in vivo. The homogeneous particles displayed small sizes in the nanometer size range and low residual water content in the solid-state. Excellent aerosol dispersion performance with a human DPI device was demonstrated. In vitro human cell viability assays showed that Ang (1-7) and PNA5 are biocompatible and safe for different human respiratory and brain cells.

6.
AAPS PharmSciTech ; 22(5): 185, 2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34143327

ABSTRACT

Respiratory diseases are among the leading causes of morbidity and mortality worldwide. Innovations in biochemical engineering and understanding of the pathophysiology of respiratory diseases resulted in the development of many therapeutic proteins and peptide drugs with high specificity and potency. Currently, protein and peptide drugs are mostly administered by injections due to their large molecular size, poor oral absorption, and labile physicochemical properties. However, parenteral administration has several limitations such as frequent dosing due to the short half-life of protein and peptide in blood, pain on administration, sterility requirement, and poor patient compliance. Among various noninvasive routes of administrations, the pulmonary route has received a great deal of attention and is a better alternative to deliver protein and peptide drugs for treating respiratory diseases and systemic diseases. Among the various aerosol dosage forms, dry powder inhaler (DPI) systems appear to be promising for inhalation delivery of proteins and peptides due to their improved stability in solid state. This review focuses on the development of DPI formulations of protein and peptide drugs using advanced spray drying. An overview of the challenges in maintaining protein stability during the drying process and stabilizing excipients used in spray drying of proteins and peptide drugs is discussed. Finally, a summary of spray-dried DPI formulations of protein and peptide drugs, their characterization, various DPI devices used to deliver protein and peptide drugs, and current clinical status are discussed.


Subject(s)
Antimicrobial Cationic Peptides/chemical synthesis , Drug Compounding/methods , Dry Powder Inhalers/methods , Recombinant Proteins/chemical synthesis , Spray Drying , Administration, Inhalation , Aerosols/chemistry , Animals , Antimicrobial Cationic Peptides/administration & dosage , Desiccation/methods , Excipients/chemistry , Humans , Isoleucine/administration & dosage , Isoleucine/chemical synthesis , Mannitol/administration & dosage , Mannitol/chemical synthesis , Particle Size , Peptides , Powders/chemistry , Recombinant Proteins/administration & dosage
7.
Pharmaceutics ; 13(1)2020 Dec 25.
Article in English | MEDLINE | ID: mdl-33375607

ABSTRACT

The purpose of this study was to formulate Lactomorphin (MMP2200) in its pure state as spray-dried(SD) powders, and with the excipient Trehalose as co-spray-dried(co-SD) powders; for intranasal and deep lung administration with Dry Powder Inhalers (DPI). Lactomorphin is a glycopeptide which was developed for the control of moderate to severe pain. Particles were rationally designed and produced by advanced spray drying particle engineering in a closed mode from a dilute organic solution. Comprehensive physicochemical characterization using different analytical techniques was carried out to analyze the particle size, particle morphology, particle surface morphology, solid-state transitions, crystallinity/non-crystallinity, and residual water content. The particle chemical composition was confirmed using attenuated total reflectance-Fourier-transform infrared (ATR-FTIR), and Confocal Raman Microscopy (CRM) confirmed the particles' chemical homogeneity. The solubility and Partition coefficient (LogP) of Lactomorphin were determined by the analytical and computational methodology and revealed the hydrophilicity of Lactomorphin. A thermal degradation study was performed by exposing samples of solid-state Lactomorphin to a high temperature (62 °C) combined with zero relative humidity (RH) and to a high temperature (62 °C) combined with a high RH (75%) to evaluate the stability of Lactomorphin under these two different conditions. The solid-state processed particles exhibited excellent aerosol dispersion performance with an FDA-approved human DPI device to reach lower airways. The cell viability resazurin assay showed that Lactomorphin is safe up to 1000 µg/mL on nasal epithelium cells, lung cells, endothelial, and astrocyte brain cells.

8.
Pharmaceuticals (Basel) ; 11(2)2018 May 27.
Article in English | MEDLINE | ID: mdl-29861484

ABSTRACT

There are health concerns associated with increased folic acid intake from fortified food and supplements. Existing analytical methods, however, which can be employed to carry out epidemiological and bioavailability studies for folic acid involve laborious sample preparation and/or lengthy chromatographic analysis. In this paper we describe a simple, rapid, and sensitive high-performance liquid chromatography⁻electrospray ionisation-tandem mass spectrometry (HPLC⁻ESI-MS/MS) method for determination of unmetabolised folic acid in human plasma using folic acid-d4 as an internal standard. The method required only a simple sample preparation step of protein precipitation and had a total run time of 3.5 min, which is the shortest run time reported to date for HPLC⁻MS/MS method employed for quantifying folic acid in plasma. The analytes were separated on a C18 column (3 µm; 50 × 3.00 mm) using an isocratic mobile phase consisting of ammonium acetate (1 mM)-acetic acid-acetonitrile (9.9:0.1:90, v/v/v). The method was fully validated in terms of accuracy, precision, linearity, selectivity, recovery, matrix effect, and stability. The short run time and the minimal sample preparation makes the method a valuable tool for performing high-throughput analyses. To demonstrate the applicability of the method in real conditions, it was applied successfully in a bioavailability study for the determination of unmetabolised folic acid levels in vivo in human plasma after oral administration of folic acid.

SELECTION OF CITATIONS
SEARCH DETAIL
...