Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biol Trace Elem Res ; 199(7): 2644-2652, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32918713

ABSTRACT

Aortic stiffness represents the major cause of aging and tightly associated with hypertension, atherosclerosis, cardiovascular diseases, and increased mortality. Mechanical characteristics of the aorta play a vital role in the blood flow, circulation, systolic pressure, and aortic stiffness; however, the correlation of trace element and mineral levels with aortic stiffness has not been studied before. Balance in the trace elements and minerals is vital for the biological functions; however, natural aging may alter this balance. Thus, after measuring aortic stiffness of aged and young rat aortas by a custom-built stretcher device, trace element and mineral levels were evaluated via ICP-MS. Also, biomarkers of aging including blood pressure, arterial pressure glucose, insulin levels, and histochemical parameters were investigated as well. Aortic stiffness, blood glucose, plasma insulin, systolic, diastolic, and mean arterial pressure significantly increased by aging in the aorta of aged rats compared with the young ones. Also, Fe, Al, Co, Ni, Zn, Sr, Na, Mg, and K levels increased in the aged aorta samples compared with the young aorta samples of rats. Increased levels of the indicated elements may be correlated with the development and progression of aortic stiffness and vascular complications. Thus, possible mechanisms correlating aortic stiffness with the imbalance in the trace element and mineral levels should be further investigated.


Subject(s)
Stretchers , Trace Elements , Vascular Stiffness , Aging , Animals , Aorta , Blood Pressure , Minerals , Rats
2.
Nanoscale ; 12(43): 22042-22048, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33146204

ABSTRACT

Complex yet compact nanoscale mechanisms have largely been absent due to the rather limited availability of components and integration techniques. Especially missing have been efficient interconnects with adjustable characteristics. To address this issue, we report here, for the first time, the transduction of collective modes in vertically stacked arrays of silicon nanowires suspended between couplers. In addition to the ambitious miniaturization, this composite resonator enables the control of coupling strength through the lithographic definition of coupler stiffness. A direct link is thus established between coupling strength and spectral response for two array architectures with nominally identical resonators but different couplers. A series of unique observations emerged in this platform, such as the splitting of a single mode into two closely spaced modes which raises the possibility of tunable bandpass filters with enhanced spectrum characteristics. Finally, intermodal coupling strengths were measured providing strong evidence about the collective nature of these modes.

3.
Nanotechnology ; 31(43): 435303, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-32503021

ABSTRACT

The patterning of silk allows for manufacturing various structures with advanced functionalities for optical and tissue engineering and drug delivery applications. Here, we propose a high-resolution nanoscale patterning method based on field-emission scanning probe lithography (FE-SPL) that crosslinks the biomaterial silk on conductive indium tin oxide (ITO) promoting the use of a biodegradable material as resist and water as a developer. During the lithographic process, Fowler-Nordheim electron emission from a sharp tip was used to manipulate the structure of silk fibroin from random coil to beta sheet and the emission formed nanoscale latent patterns with a critical dimension (CD) of ∼50 nm. To demonstrate the versatility of the method, we patterned standard and complex shapes. This method is particularly attractive due to its ease of operation without relying on a vacuum or a special gaseous environment and without any need for complex electronics or optics. Therefore, this study paves a practical and cost-effective way toward patterning biopolymers at ultra-high level resolution.


Subject(s)
Bioprinting/methods , Nanotechnology/methods , Silk/chemistry , Animals , Biocompatible Materials/chemistry , Bombyx/chemistry , Electric Conductivity , Tin Compounds/chemistry
4.
J Appl Crystallogr ; 53(Pt 1): 58-68, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32047404

ABSTRACT

Silicon nanowire-based sensors find many applications in micro- and nano-electromechanical systems, thanks to their unique characteristics of flexibility and strength that emerge at the nanoscale. This work is the first study of this class of micro- and nano-fabricated silicon-based structures adopting the scanning X-ray diffraction microscopy technique for mapping the in-plane crystalline strain (∊044) and tilt of a device which includes pillars with suspended nanowires on a substrate. It is shown how the micro- and nanostructures of this new type of nanowire system are influenced by critical steps of the fabrication process, such as electron-beam lithography and deep reactive ion etching. X-ray analysis performed on the 044 reflection shows a very low level of lattice strain (<0.00025 Δd/d) but a significant degree of lattice tilt (up to 0.214°). This work imparts new insights into the crystal structure of micro- and nanomaterial-based sensors, and their relationship with critical steps of the fabrication process.

5.
Int J Biol Macromol ; 148: 49-55, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31945444

ABSTRACT

Alginates attract growing interest due to their biocompatible and biodegradable nature. Here, a wide spectrum of glycerol added alginate films (from 0 to 30% w/w, glycerol/alginate) were prepared and crosslinked by four different concentrations of calcium chloride solutions (0.5, 1, 1.5, 2%, w/w). This is the first investigation involving variation of both the plasticizer and crosslinker concentrations in twenty different compositions. It is shown that glycerol and calcium have a synergic effect on the mechanical properties and the behavior of crosslinked and plasticized alginate films cannot be predicted by studies, which vary only one of these, keeping the other constant. Without glycerol, crosslinking had a negligible effect on tensile behavior, but with glycerol addition, the effect of crosslinking became evident in mechanical properties. Calcium and glycerol concentrations exhibited a combined effect, displaying optimum combinations with good strength and fracture strain properties. Crosslinking increased the thermal resistance of all films. Low crosslinked high swelling films and highly crosslinked low swelling films were prepared. Water vapor permeability of films decreased regularly with increasing calcium concentration. The films exhibited high transmittance in the visible region. The results showed that alginate films have an appreciable potential in wound dressing and food packaging applications.


Subject(s)
Alginates/chemistry , Biocompatible Materials/chemistry , Calcium Chloride/chemistry , Glycerol/chemistry , Plasticizers/chemistry , Bandages , Calcium/analysis , Food Packaging , Permeability , Physical Phenomena , Spectroscopy, Fourier Transform Infrared , Steam
6.
J Mech Behav Biomed Mater ; 103: 103538, 2020 03.
Article in English | MEDLINE | ID: mdl-31760274

ABSTRACT

As a widely used elastomer in cell mechanics studies, PDMS is exposed to a variety of surface treatments during cell culture preparation. Considering its viscoelastic nature in particular, effects of the aforementioned treatments on PDMS mechanical behaviour, especially at the relevant length scale of 100 µm, received limited attention. This is despite the fact that significant errors were reported in the quantification of cellular traction forces as a result of minute changes in PDMS mechanical properties. Hence, the effects of plasma oxidation, sterilization and incubation on PDMS modulus of elasticity, relaxation modulus and Poisson's ratio are studied here through tension and stress relaxation tests, with the results of the latter interpreted via the linear viscoelastic formulation. It is observed that although significant deviations from the properties of untreated PDMS are measured through this cycle of surface treatment, properties of untreated PDMS are almost recovered following incubation in cell medium. For example, the modulus of elasticity of treated PDMS was found to be 6% smaller than that of the untreated PDMS. The corresponding deviation was <3% and <1% for the relaxation modulus and time-averaged Poisson's ratio, respectively. The rate of change of the Poisson's ratio with time was also found to be reduced at the end of incubation process in cell medium. As a result, viscoelastic properties of untreated PDMS can safely be used within the error margins provided by this work.


Subject(s)
Stress, Mechanical , Elasticity
7.
J Mech Behav Biomed Mater ; 100: 103374, 2019 12.
Article in English | MEDLINE | ID: mdl-31401544

ABSTRACT

The control of viscoelastic properties of alginate biopolymer that mimics the matrix properties of biological substrates plays an important role for the success of its biomedical applications. For this purpose stress relaxation behavior of glycerol plasticized sodium alginate films is characterized at room temperature as a function of the glycerol concentration ranging up to 40%. A series of experiments are thus conducted at relative humidity levels of 38 ±â€¯1% and 51 ±â€¯1%. The glycerol content is demonstrated to amplify the effect of humidity on relaxation profiles. In the case of 30% glycerol, normalized stress at the level of 65% is recorded at the end of the first 30 min at the low humidity level, whereas the corresponding value drops to 8% with increased humidity. Alginate films with no glycerol content exhibit much higher normalized stresses of 89% and 73% at low and high humidity levels, respectively. In addition, stress relaxation is observed to continue well beyond the first 30 min, especially for glycerol concentrations lower than 30%, where 9-hour parameters for a stretched exponential Kohlrausch - Williams - Watts function are reported demonstrating the importance of relaxation time for successful modeling.


Subject(s)
Alginates/chemistry , Biopolymers/chemistry , Glycerol/chemistry , Elasticity , Finite Element Analysis , Humidity , Hydrogen Bonding , Materials Testing , Stress, Mechanical , Temperature , Tensile Strength , Time Factors , Viscosity
8.
Nanotechnology ; 30(45): 455702, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31362274

ABSTRACT

There are remarkable studies geared towards developing mechanical analysis of nanoporous structures, while the size effect has been a major concern so far to improve strength or deformability. In this study, molecular dynamics simulations are utilized to study the pore shape effect on the mechanical behaviour of nanoporous silicon with circular, elliptical, square and hexagonal pore shapes. The influence of pore configuration on load transfer capabilities is studied for nanoporous silicon. A distinguished set of mechanical properties is observed on silicon with a hexagonal pore shape-resembling a honeycomb structure-with a high tensile strength and toughness. The study exhibits an improvement in the ductility through unique stress transformation in the hexagonal pore shape. In addition to the relative density, the potential to control the mechanical properties is demonstrated through the hexagon angle. Finally, a scaling law is developed for the mechanical behaviour of honeycomb nanoporous silicon. In addition to their outstanding mechanical properties, the work provides further insight into the capability of nanoporous structures in sensing applications due to their high surface-to-volume ratios.


Subject(s)
Silicon/chemistry , Materials Testing , Molecular Dynamics Simulation , Nanopores , Stress, Mechanical , Surface Properties , Tensile Strength
9.
Nanotechnology ; 28(11): 115302, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28205512

ABSTRACT

Silica nanowires spanning 10 µm-deep trenches are fabricated from different types of silsesquioxane-based precursors by direct e-beam patterning on silicon followed by release through deep reactive ion etching. Nanowire aspect ratios as large as 150 are achieved with a critical dimension of about 50 nm and nearly rectangular cross-sections. In situ bending tests are carried out inside a scanning electron microscope, where the etch depth of 10 [Formula: see text] provides sufficient space for deformation. Silica NWs are indeed observed to exhibit superplastic behavior without fracture with deflections reaching the full etch depth, about two orders of magnitude larger than the nanowire thickness. A large-deformation elastic bending model is utilized for predicting the deviation from the elastic behavior. The results of forty different tests indicate a critical stress level of 0.1-0.4 GPa for the onset of plasticity. The study hints at the possibility of fabricating silica nanowires in a monolithic fashion through direct e-beam patterning of silsesquioxane-based resins. The fabrication technology is compatible with semiconductor manufacturing and provides silica nanowires with a very good structural integrity.

10.
Nanotechnology ; 27(9): 095303, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26854570

ABSTRACT

Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a top-down, silicon-on-insulator technology. The technology provides a pathway for obtaining well-controlled silicon nanowires along with the surrounding microscale features up to a three-order-of-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 µm. Nanowire cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. The adoption of the technology in the fabrication of micro and nanosystems can potentially lead to a significant reduction in process complexity by facilitating direct access to the nanowire during surface processes such as contact formation and doping.

11.
Biosens Bioelectron ; 28(1): 189-94, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21803562

ABSTRACT

Resonant microcantilever arrays are developed for the purpose of label-free and real-time analyte monitoring and biomolecule detection. MEMS cantilevers made of electroplated nickel are functionalized with Hepatitis antibodies. Hepatitis A and C antigens at different concentrations are introduced in undiluted bovine serum. All preparation and measurement steps are carried out in the liquid within a specifically designed flowcell without ever drying the cantilevers throughout the experiment. Both actuation and sensing are done remotely and therefore the MEMS cantilevers have no electrical connections, allowing for easily disposable sensor chips. Actuation is achieved using an electromagnet and the interferometric optical sensing is achieved using laser illumination and embedded diffraction gratings at the tip of each cantilever. Resonant frequency of the cantilevers in dynamic motion is monitored using a self-sustaining closed-loop control circuit and a frequency counter. Specificity is demonstrated by detecting both Hepatitis A and Hepatitis C antigens and their negative controls. This is the first report of Hepatitis antigen detection by resonant cantilevers exposed to undiluted serum. A dynamic range in excess of 1000 and with a minimum detectable concentration limit of 0.1ng/ml (1.66pM) is achieved for both Hepatitis A and C. This result is comparable to labeled detection methods such as ELISA.


Subject(s)
Biosensing Techniques/methods , Hepacivirus/isolation & purification , Hepatitis A virus/isolation & purification , Viremia/diagnosis , Hepatitis A Antigens/blood , Hepatitis C Antigens/blood
12.
Biosens Bioelectron ; 26(1): 195-201, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20621464

ABSTRACT

Label-free detection of the interaction between hexahistidine-tagged human κ-opioid receptor membrane protein and anti-His antibody is demonstrated in liquid by an optical microelectromechanical system utilizing electromagnetically actuated microresonators. Shift in resonance frequency due to accretion of mass on the sensitive surface of microresonators is monitored via an integrated optical readout. A frequency resolution of 2Hz is obtained. Together with a sensitivity of 7 ppm/(ng/ml) this leads to a minimum detectable antibody concentration of 5.7 ng/ml for a 50-kHz device. The measurement principle is shown to impart immunity to environmental noise, facilitate operation in liquid media and bring about the prospect for further miniaturization of actuator and readout leading to a portable biochemical sensor.


Subject(s)
Antibodies/analysis , Biosensing Techniques/instrumentation , Immunoassay/instrumentation , Micro-Electrical-Mechanical Systems/instrumentation , Optical Devices , Receptors, Opioid, kappa/analysis , Refractometry/instrumentation , Antibodies/immunology , Equipment Design , Equipment Failure Analysis , Receptors, Opioid, kappa/immunology
13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(2 Pt 1): 021405, 2006 Aug.
Article in English | MEDLINE | ID: mdl-17025423

ABSTRACT

In order to provide a sound physical basis for the understanding of the formation of desiccation crack networks, an experimental study is presented addressing junction formation. Focusing on junctions, basic features of the network determining the final pattern, provides an elemental approach and imparts conceptual clarity to the rather complicated problem of the evolution of crack patterns. Using coffee-water mixtures a clear distinction between junction formation during nucleation and propagation is achieved. It is shown that for the same drying suspension, one can switch from the well-known symmetric triple junctions that are unique to the nucleation phase to propagation junctions that are purely dictated by the variations of the stress state. In the latter case, one can even manipulate the path of a propagating crack in a deterministic fashion by changing the stress state within the suspension. Clear microscopic evidence is provided for the formation of propagation junctions, and material inhomogeneity is observed to be reflected by a broad distribution of angles, in stark contrast to shrinkage cracks in homogeneous solid films.

SELECTION OF CITATIONS
SEARCH DETAIL
...