Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1360054, 2024.
Article in English | MEDLINE | ID: mdl-38638133

ABSTRACT

Introduction: Osteoporosis is a systemic age-related disease characterized by reduced bone mass and microstructure deterioration, leading to increased risk of bone fragility fractures. Osteoporosis is a worldwide major health care problem and there is a need for preventive approaches. Methods and results: Apigenin and Rutaecarpine are plant-derived antioxidants identified through functional screen of a natural product library (143 compounds) as enhancers of osteoblastic differentiation of human bone marrow stromal stem cells (hBMSCs). Global gene expression profiling and Western blot analysis revealed activation of several intra-cellular signaling pathways including focal adhesion kinase (FAK) and TGFß. Pharmacological inhibition of FAK using PF-573228 (5 µM) and TGFß using SB505124 (1µM), diminished Apigenin- and Rutaecarpine-induced osteoblast differentiation. In vitro treatment with Apigenin and Rutaecarpine, of primary hBMSCs obtained from elderly female patients enhanced osteoblast differentiation compared with primary hBMSCs obtained from young female donors. Ex-vivo treatment with Apigenin and Rutaecarpine of organotypic embryonic chick-femur culture significantly increased bone volume and cortical thickness compared to control as estimated by µCT-scanning. Discussion: Our data revealed that Apigenin and Rutaecarpine enhance osteoblastic differentiation, bone formation, and reduce the age-related effects of hBMSCs. Therefore, Apigenin and Rutaecarpine cellular treatment represent a potential strategy for maintaining hBMSCs health during aging and osteoporosis.


Subject(s)
Indole Alkaloids , Mesenchymal Stem Cells , Osteoporosis , Quinazolinones , Humans , Aged , Apigenin/pharmacology , Apigenin/metabolism , Osteoblasts/metabolism , Cellular Senescence , Transforming Growth Factor beta/metabolism , Osteoporosis/drug therapy , Osteoporosis/metabolism
2.
BMC Genomics ; 25(1): 151, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326777

ABSTRACT

BACKGROUND: The mRNA subcellular localization bears substantial impact in the regulation of gene expression, cellular migration, and adaptation. However, the methods employed for experimental determination of this localization are arduous, time-intensive, and come with a high cost. METHODS: In this research article, we tackle the essential challenge of predicting the subcellular location of messenger RNAs (mRNAs) through Unified mRNA Subcellular Localization Predictor (UMSLP), a machine learning (ML) based approach. We embrace an in silico strategy that incorporate four distinct feature sets: kmer, pseudo k-tuple nucleotide composition, nucleotide physicochemical attributes, and the 3D sequence depiction achieved via Z-curve transformation for predicting subcellular localization in benchmark dataset across five distinct subcellular locales, encompassing nucleus, cytoplasm, extracellular region (ExR), mitochondria, and endoplasmic reticulum (ER). RESULTS: The proposed ML model UMSLP attains cutting-edge outcomes in predicting mRNA subcellular localization. On independent testing dataset, UMSLP ahcieved over 87% precision, 94% specificity, and 94% accuracy. Compared to other existing tools, UMSLP outperformed mRNALocator, mRNALoc, and SubLocEP by 11%, 21%, and 32%, respectively on average prediction accuracy for all five locales. SHapley Additive exPlanations analysis highlights the dominance of k-mer features in predicting cytoplasm, nucleus, ER, and ExR localizations, while Z-curve based features play pivotal roles in mitochondria subcellular localization detection. AVAILABILITY: We have shared datasets, code, Docker API for users in GitHub at: https://github.com/smusleh/UMSLP .


Subject(s)
Endoplasmic Reticulum , Mitochondria , RNA, Messenger/genetics , Mitochondria/genetics , Computational Biology/methods , Machine Learning , Nucleotides
3.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396924

ABSTRACT

Diabetes is recognized as a risk factor for cognitive decline, but the underlying mechanisms remain elusive. We aimed to identify the metabolic pathways altered in diabetes-associated cognitive decline (DACD) using untargeted metabolomics. We conducted liquid chromatography-mass spectrometry-based untargeted metabolomics to profile serum metabolite levels in 100 patients with type 2 diabetes (T2D) (54 without and 46 with DACD). Multivariate statistical tools were used to identify the differentially expressed metabolites (DEMs), and enrichment and pathways analyses were used to identify the signaling pathways associated with the DEMs. The receiver operating characteristic (ROC) analysis was employed to assess the diagnostic accuracy of a set of metabolites. We identified twenty DEMs, seven up- and thirteen downregulated in the DACD vs. DM group. Chemometric analysis revealed distinct clustering between the two groups. Metabolite set enrichment analysis found significant enrichment in various metabolite sets, including galactose metabolism, arginine and unsaturated fatty acid biosynthesis, citrate cycle, fructose and mannose, alanine, aspartate, and glutamate metabolism. Pathway analysis identified six significantly altered pathways, including arginine and unsaturated fatty acid biosynthesis, and the metabolism of the citrate cycle, alanine, aspartate, glutamate, a-linolenic acid, and glycerophospholipids. Classifier models with AUC-ROC > 90% were developed using individual metabolites or a combination of individual metabolites and metabolite ratios. Our study provides evidence of perturbations in multiple metabolic pathways in patients with DACD. The distinct DEMs identified in this study hold promise as diagnostic biomarkers for DACD patients.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Cross-Sectional Studies , Metabolome , Aspartic Acid/metabolism , Metabolomics , Alanine/metabolism , Arginine/metabolism , Citrates , Glutamates/metabolism , Fatty Acids, Unsaturated
4.
Front Neurol ; 14: 1256745, 2023.
Article in English | MEDLINE | ID: mdl-38107644

ABSTRACT

Background: Dementia is a debilitating neurological disease affecting millions of people worldwide. The exact mechanisms underlying the initiation and progression of the disease remain to be fully defined. There is an increasing body of evidence for the role of immune dysregulation in the pathogenesis of dementia, where blood-borne autoimmune antibodies have been studied as potential markers associated with pathological mechanisms of dementia. Methods: This study included plasma from 50 cognitively normal individuals, 55 subjects with MCI (mild cognitive impairment), and 22 subjects with dementia. Autoantibody profiling for more than 1,600 antigens was performed using a high throughput microarray platform to identify differentially expressed autoantibodies in MCI and dementia. Results: The differential expression analysis identified 33 significantly altered autoantibodies in the plasma of patients with dementia compared to cognitively normal subjects, and 38 significantly altered autoantibodies in the plasma of patients with dementia compared to subjects with MCI. And 20 proteins had significantly altered autoantibody responses in MCI compared to cognitively normal individuals. Five autoantibodies were commonly dysregulated in both dementia and MCI, including anti-CAMK2A, CKS1B, ETS2, MAP4, and NUDT2. Plasma levels of anti-ODF3, E6, S100P, and ARHGDIG correlated negatively with the cognitive performance scores (MoCA) (r2 -0.56 to -0.42, value of p < 0.001). Additionally, several proteins targeted by autoantibodies dysregulated in dementia were significantly enriched in the neurotrophin signaling pathway, axon guidance, cholinergic synapse, long-term potentiation, apoptosis, glycolysis and gluconeogenesis. Conclusion: We have shown multiple dysregulated autoantibodies in the plasma of subjects with MCI and dementia. The corresponding proteins for these autoantibodies are involved in neurodegenerative pathways, suggesting a potential impact of autoimmunity on the etiology of dementia and the possible benefit for future therapeutic approaches. Further investigations are warranted to validate our findings.

5.
Front Mol Neurosci ; 16: 1222506, 2023.
Article in English | MEDLINE | ID: mdl-37908488

ABSTRACT

Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by defects in two core domains, social/communication skills and restricted/repetitive behaviors or interests. There is no approved biomarker for ASD diagnosis, and the current diagnostic method is based on clinical manifestation, which tends to vary vastly between the affected individuals due to the heterogeneous nature of ASD. There is emerging evidence that supports the implication of the immune system in ASD, specifically autoimmunity; however, the role of autoantibodies in ASD children is not yet fully understood. Materials and methods: In this study, we screened serum samples from 93 cases with ASD and 28 healthy controls utilizing high-throughput KoRectly Expressed (KREX) i-Ome protein-array technology. Our goal was to identify autoantibodies with differential expressions in ASD and to gain insights into the biological significance of these autoantibodies in the context of ASD pathogenesis. Result: Our autoantibody expression analysis identified 29 differential autoantibodies in ASD, 4 of which were upregulated and 25 downregulated. Subsequently, gene ontology (GO) and network analysis showed that the proteins of these autoantibodies are expressed in the brain and involved in axonal guidance, chromatin binding, and multiple metabolic pathways. Correlation analysis revealed that these autoantibodies negatively correlate with the age of ASD subjects. Conclusion: This study explored autoantibody reactivity against self-antigens in ASD individuals' serum using a high-throughput assay. The identified autoantibodies were reactive against proteins involved in axonal guidance, synaptic function, amino acid metabolism, fatty acid metabolism, and chromatin binding.

6.
Cell Commun Signal ; 21(1): 265, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770979

ABSTRACT

BACKGROUND: While the increased screening, changes in lifestyle, and recent advances in treatment regimen have decreased colorectal cancer (CRC) mortality, metastatic disease and recurrence remains a major clinical challenge. In the era of precision medicine, the identification of actionable novel therapeutic targets could ultimately offer an alternative treatment strategy for CRC. METHODS: RNA-Seq was conducted using the illumina platform, while bioinformatics analyses were conducted using CLC genomics workbench and iDEP.951. Colony forming unit, flow cytometry, and fluorescent microscopy were used to assess cell proliferation, cell cycle distribution, and cell death, respectively. The growth potential of CRC cells under 3-dimensional (3D) conditions was assessed using Matrigel. STRING database (v11.5) and Ingenuity Pathway Analysis (IPA) tool were used for network and pathway analyses. CRISPR-Cas9 perturbational effects database was used to identify potential therapeutic targets for CRC, through integration with gene-drug interaction database. Structural modeling and molecular docking were used to assess the interaction between candidate drugs and their targets. RESULTS: In the current study, we investigated the therapeutic potential of targeting TPX2, TTK, DDX39A, and LRP8, commonly upregulated genes in CRC identified through differential expression analysis in CRC and adjacent non-cancerous tissue. Targeted depletion of TPX2 and TTK impaired CRC proliferation, cell cycle progression, and organoid formation under 3D culture conditions, while suppression of DDX39A and LRP8 had modest effects on CRC colony formation. Differential expression analysis and bioinformatics on TPX2 and TTK-deficient cells identified cell cycle regulation as the hallmark associated with loss of TPX2 and TTK. Elevated expression of TPX2 and TTK correlated with an oncogenic state in tumor tissue from patients with colon adenocarcinoma, thus corroborating an oncogenic role for the TPX2/TTK network in the pathogenesis of CRC. Gene set enrichment and pathway analysis of TPX2high/TTKhigh CRC identified numerous additional gene targets as integral components of the TPX2/TTK network. Integration of TPX2/TTK enriched network with CRISPR-Cas9 functional screen data identified numerous novel dependencies for CRC. Additionally, gene-drug interaction analysis identified several druggable gene targets enriched in the TPX2/TTK network, including AURKA, TOP2A, CDK1, BIRC5, and many others. CONCLUSIONS: Our data has implicated an essential role for TPX2 and TTK in CRC pathogenesis and identified numerous potential therapeutic targets and their drug interactions, suggesting their potential clinical use as a novel therapeutic strategy for patients with CRC. Video Abstract.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Colorectal Neoplasms , Humans , Colonic Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Adenocarcinoma/pathology , Molecular Docking Simulation , Cell Proliferation , Gene Expression Regulation, Neoplastic , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Protein-Tyrosine Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism
7.
Cell Commun Signal ; 21(1): 229, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37670346

ABSTRACT

BACKGROUND: Our recent studies have demonstrated the crucial involvement of FOXA2 in the development of human pancreas. Reduction of FOXA2 expression during the differentiation of induced pluripotent stem cells (iPSCs) into pancreatic islets has been found to reduce α-and ß-cell masses. However, the extent to which such changes are linked to alterations in the expression profile of long non-coding RNAs (lncRNAs) remains unraveled. METHODS: Here, we employed our recently established FOXA2-deficient iPSCs (FOXA2-/- iPSCs) to investigate changes in lncRNA profiles and their correlation with dysregulated mRNAs during the pancreatic progenitor (PP) and pancreatic islet stages. Furthermore, we constructed co-expression networks linking significantly downregulated lncRNAs with differentially expressed pancreatic mRNAs. RESULTS: Our results showed that 442 lncRNAs were downregulated, and 114 lncRNAs were upregulated in PPs lacking FOXA2 compared to controls. Similarly, 177 lncRNAs were downregulated, and 59 lncRNAs were upregulated in islet cells lacking FOXA2 compared to controls. At both stages, we observed a strong correlation between lncRNAs and several crucial pancreatic genes and TFs during pancreatic differentiation. Correlation analysis revealed 12 DE-lncRNAs that strongly correlated with key downregulated pancreatic genes in both PPs and islet cell stages. Selected DE-lncRNAs were validated using RT-qPCR. CONCLUSIONS: Our data indicate that the observed defects in pancreatic islet development due to the FOXA2 loss is associated with significant alterations in the expression profile of lncRNAs. Therefore, our findings provide novel insights into the role of lncRNA and mRNA networks in regulating pancreatic islet development, which warrants further investigations. Video Abstract.


Subject(s)
Induced Pluripotent Stem Cells , Insulin-Secreting Cells , RNA, Long Noncoding , Humans , Pancreas , Cell Differentiation , RNA, Messenger , Hepatocyte Nuclear Factor 3-beta
8.
Front Med (Lausanne) ; 10: 1149860, 2023.
Article in English | MEDLINE | ID: mdl-37727755

ABSTRACT

Our understanding of the function of long non-coding RNAs (lncRNAs) in health and disease states has evolved over the past decades due to the many advances in genome research. In the current study, we characterized the lncRNA transcriptome enriched in triple-negative breast cancer (TNBC, n = 42) and estrogen receptor (ER+, n = 42) breast cancer compared to normal breast tissue (n = 56). Given the aggressive nature of TNBC, our data revealed selective enrichment of 57 lncRNAs in TNBC. Among those, AC099850.4 lncRNA was chosen for further investigation where it exhibited elevated expression, which was further confirmed in a second TNBC cohort (n = 360) where its expression correlated with a worse prognosis. Network analysis of AC099850.4high TNBC highlighted enrichment in functional categories indicative of cell cycle activation and mitosis. Ingenuity pathway analysis on the differentially expressed genes in AC099850.4high TNBC revealed the activation of the canonical kinetochore metaphase signaling pathway, pyridoxal 5'-phosphate salvage pathway, and salvage pathways of pyrimidine ribonucleotides. Additionally, upstream regulator analysis predicted the activation of several upstream regulator networks including CKAP2L, FOXM1, RABL6, PCLAF, and MITF, while upstream regulator networks of TP53, NUPR1, TRPS1, and CDKN1A were suppressed. Interestingly, elevated expression of AC099850.4 correlated with worse short-term relapse-free survival (log-rank p = 0.01). Taken together, our data are the first to reveal AC099850.4 as an unfavorable prognostic marker in TNBC, associated with more aggressive clinicopathological features, and suggest its potential utilization as a prognostic biomarker and therapeutic target in TNBC.

10.
Int J Mol Sci ; 24(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37511368

ABSTRACT

Excess hepatic lipid accumulation is the hallmark of non-alcoholic fatty liver disease (NAFLD), for which no medication is currently approved. However, glucagon-like peptide-1 receptor agonists (GLP-1RAs), already approved for treating type 2 diabetes, have lately emerged as possible treatments. Herein we aim to investigate how the GLP-1RA exendin-4 (Ex-4) affects the microRNA (miRNAs) expression profile using an in vitro model of steatosis. Total RNA, including miRNAs, was isolated from control, steatotic, and Ex-4-treated steatotic cells and used for probing a panel of 799 highly curated miRNAs using NanoString technology. Enrichment pathway analysis was used to find the signaling pathways and cellular functions associated with the differentially expressed miRNAs. Our data shows that Ex-4 reversed the expression of a set of miRNAs. Functional enrichment analysis highlighted many relevant signaling pathways and cellular functions enriched in the differentially expressed miRNAs, including hepatic fibrosis, insulin receptor, PPAR, Wnt/ß-Catenin, VEGF, and mTOR receptor signaling pathways, fibrosis of the liver, cirrhosis of the liver, proliferation of hepatic stellate cells, diabetes mellitus, glucose metabolism disorder and proliferation of liver cells. Our findings suggest that miRNAs may play essential roles in the processes driving steatosis reduction in response to GLP-1R agonists, which warrants further functional investigation.


Subject(s)
Diabetes Mellitus, Type 2 , MicroRNAs , Non-alcoholic Fatty Liver Disease , Humans , Exenatide/pharmacology , MicroRNAs/genetics , MicroRNAs/therapeutic use , Hep G2 Cells , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Glucagon-Like Peptide 1/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Liver Cirrhosis , Glucagon-Like Peptide-1 Receptor/genetics
11.
Cell Death Dis ; 14(7): 415, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37438342

ABSTRACT

Previous studies have suggested that breast cancer (BC) from the Middle East and North Africa (MENA) is presented at younger age with advanced tumor stage, indicating underlying biological differences. Given the scant transcriptomic data on BC from the MENA region and to better understand the biology of this disease, we performed mRNA and microRNA (miRNA) transcriptomic profiling on a local cohort of BC (n = 96) from Qatar. Our data revealed the differentially expressed genes and miRNAs as function of BC molecular subtypes (HR+, HER2+, HER2+HR+, and TNBC), tumor grade (GIII vs GI-II), patients' age (young (≤40) vs old (>40)), and ethnicity (MENA vs non-MENA). Our profiling data revealed close similarity between TNBC and HER2+, while the transcriptome of HER2+HR+ tumor was resemblant of that from HR+ tumors. Network analysis identified complex miRNA-mRNA regulatory networks in each BC molecular subtype, in high vs low grade tumors, in tumors from young vs old patients, and in tumors from MENA vs non-MENA, thus implicating miRNA-mediated gene regulation as an essential mechanism in shaping the transcriptome of BC. Integration of our transcriptomic data with CRISPR-Cas9 functional screen data and the OncoKB database identified numerous dependencies and therapeutic vulnerabilities in each BC molecular subtype, while CDC123 was functionally validated as potential therapeutic target for TNBC. Cox regression survival analyses identified mRNA and miRNA-based signatures predicative of worse and better relapse free survival (RFS), which were validated in larger BC cohorts. Our data provides comprehensive transcriptomic profiling and unraveled the miRNA-mRNA regulatory networks in BC patients from the region and identified novel actionable gene targets, employing integrated approach. Findings from the current study have potential implications to improve the current standard-of-care for BC from the MENA as well as patients from other ethnicities.


Subject(s)
MicroRNAs , Triple Negative Breast Neoplasms , Humans , MicroRNAs/genetics , Gene Expression Profiling , Transcriptome/genetics , RNA, Messenger/genetics
12.
Cells ; 12(8)2023 04 18.
Article in English | MEDLINE | ID: mdl-37190091

ABSTRACT

Breast cancer (BC) is a heterogeneous disease, which is primarily classified according to hormone receptors and HER2 expression. Despite the many advances in BC diagnosis and management, the identification of novel actionable therapeutic targets expressed by cancerous cells has always been a daunting task due to the large heterogeneity of the disease and the presence of non-cancerous cells (i.e., immune cells and stromal cells) within the tumor microenvironment. In the current study, we employed computational algorithms to decipher the cellular composition of estrogen receptor-positive (ER+), HER2+, ER+HER2+, and triple-negative BC (TNBC) subtypes from a total of 49,899 single cells' publicly available transcriptomic data derived from 26 BC patients. Restricting the analysis to EPCAM+Lin- tumor epithelial cells, we identified the enriched gene sets in each BC molecular subtype. Integration of single-cell transcriptomic with CRISPR-Cas9 functional screen data identified 13 potential therapeutic targets for ER+, 44 potential therapeutic targets for HER2+, and 29 potential therapeutic targets for TNBC. Interestingly, several of the identified therapeutic targets outperformed the current standard of care for each BC subtype. Given the aggressive nature and lack of targeted therapies for TNBC, elevated expression of ENO1, FDPS, CCT6A, TUBB2A, and PGK1 predicted worse relapse-free survival (RFS) in basal BC (n = 442), while elevated expression of ENO1, FDPS, CCT6A, and PGK1 was observed in the most aggressive BLIS TNBC subtype. Mechanistically, targeted depletion of ENO1 and FDPS halted TNBC cell proliferation, colony formation, and organoid tumor growth under 3-dimensional conditions and increased cell death, suggesting their potential use as novel therapeutic targets for TNBC. Differential expression and gene set enrichment analysis in TNBC revealed enrichment in the cycle and mitosis functional categories in FDPShigh, while ENO1high was associated with numerous functional categories, including cell cycle, glycolysis, and ATP metabolic processes. Taken together, our data are the first to unravel the unique gene signatures and to identify novel dependencies and therapeutic vulnerabilities for each BC molecular subtype, thus setting the foundation for the future development of more effective targeted therapies for BC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Single-Cell Gene Expression Analysis , Neoplasm Recurrence, Local , Gene Expression Profiling , Transcriptome/genetics , Tumor Microenvironment/genetics , Chaperonin Containing TCP-1/genetics
13.
Int J Mol Sci ; 24(9)2023 May 01.
Article in English | MEDLINE | ID: mdl-37175824

ABSTRACT

Dementia is a progressive and debilitating neurological disease that affects millions of people worldwide. Identifying the minimally invasive biomarkers associated with dementia that could provide insights into the disease pathogenesis, improve early diagnosis, and facilitate the development of effective treatments is pressing. Proteomic studies have emerged as a promising approach for identifying the protein biomarkers associated with dementia. This pilot study aimed to investigate the plasma proteome profile and identify a panel of various protein biomarkers for dementia. We used a high-throughput proximity extension immunoassay to quantify 1090 proteins in 122 participants (22 with dementia, 64 with mild cognitive impairment (MCI), and 36 controls with normal cognitive function). Limma-based differential expression analysis reported the dysregulation of 61 proteins in the plasma of those with dementia compared with controls, and machine learning algorithms identified 17 stable diagnostic biomarkers that differentiated individuals with AUC = 0.98 ± 0.02. There was also the dysregulation of 153 plasma proteins in individuals with dementia compared with those with MCI, and machine learning algorithms identified 8 biomarkers that classified dementia from MCI with an AUC of 0.87 ± 0.07. Moreover, multiple proteins selected in both diagnostic panels such as NEFL, IL17D, WNT9A, and PGF were negatively correlated with cognitive performance, with a correlation coefficient (r2) ≤ -0.47. Gene Ontology (GO) and pathway analysis of dementia-associated proteins implicated immune response, vascular injury, and extracellular matrix organization pathways in dementia pathogenesis. In conclusion, the combination of high-throughput proteomics and machine learning enabled us to identify a blood-based protein signature capable of potentially differentiating dementia from MCI and cognitively normal controls. Further research is required to validate these biomarkers and investigate the potential underlying mechanisms for the development of dementia.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Proteomics , Pilot Projects , Biomarkers
14.
Int J Mol Sci ; 24(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37108604

ABSTRACT

Autism spectrum disorder (ASD) is an umbrella term that encompasses several disabling neurodevelopmental conditions. These conditions are characterized by impaired manifestation in social and communication skills with repetitive and restrictive behaviors or interests. Thus far, there are no approved biomarkers for ASD screening and diagnosis; also, the current diagnosis depends heavily on a physician's assessment and family's awareness of ASD symptoms. Identifying blood proteomic biomarkers and performing deep blood proteome profiling could highlight common underlying dysfunctions between cases of ASD, given its heterogeneous nature, thus laying the foundation for large-scale blood-based biomarker discovery studies. This study measured the expression of 1196 serum proteins using proximity extension assay (PEA) technology. The screened serum samples included ASD cases (n = 91) and healthy controls (n = 30) between 6 and 15 years of age. Our findings revealed 251 differentially expressed proteins between ASD and healthy controls, of which 237 proteins were significantly upregulated and 14 proteins were significantly downregulated. Machine learning analysis identified 15 proteins that could be biomarkers for ASD with an area under the curve (AUC) = 0.876 using support vector machine (SVM). Gene Ontology (GO) analysis of the top differentially expressed proteins (TopDE) and weighted gene co-expression analysis (WGCNA) revealed dysregulation of SNARE vesicular transport and ErbB pathways in ASD cases. Furthermore, correlation analysis showed that proteins from those pathways correlate with ASD severity. Further validation and verification of the identified biomarkers and pathways are warranted.


Subject(s)
Autism Spectrum Disorder , Humans , Autism Spectrum Disorder/genetics , Pilot Projects , Proteomics , Biomarkers/metabolism , Proteome/metabolism
16.
BMC Bioinformatics ; 24(1): 109, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36949389

ABSTRACT

BACKGROUND: Subcellular localization of messenger RNA (mRNAs) plays a pivotal role in the regulation of gene expression, cell migration as well as in cellular adaptation. Experiment techniques for pinpointing the subcellular localization of mRNAs are laborious, time-consuming and expensive. Therefore, in silico approaches for this purpose are attaining great attention in the RNA community. METHODS: In this article, we propose MSLP, a machine learning-based method to predict the subcellular localization of mRNA. We propose a novel combination of four types of features representing k-mer, pseudo k-tuple nucleotide composition (PseKNC), physicochemical properties of nucleotides, and 3D representation of sequences based on Z-curve transformation to feed into machine learning algorithm to predict the subcellular localization of mRNAs. RESULTS: Considering the combination of the above-mentioned features, ennsemble-based models achieved state-of-the-art results in mRNA subcellular localization prediction tasks for multiple benchmark datasets. We evaluated the performance of our method  in ten subcellular locations, covering cytoplasm, nucleus, endoplasmic reticulum (ER), extracellular region (ExR), mitochondria, cytosol, pseudopodium, posterior, exosome, and the ribosome. Ablation study highlighted k-mer and PseKNC to be more dominant than other features for predicting cytoplasm, nucleus, and ER localizations. On the other hand, physicochemical properties and Z-curve based features contributed the most to ExR and mitochondria detection. SHAP-based analysis revealed the relative importance of features to provide better insights into the proposed approach. AVAILABILITY: We have implemented a Docker container and API for end users to run their sequences on our model. Datasets, the code of API and the Docker are shared for the community in GitHub at: https://github.com/smusleh/MSLP .


Subject(s)
Algorithms , Cell Nucleus , RNA, Messenger/genetics , Ribosomes , Machine Learning , Computational Biology/methods
17.
Stem Cell Rev Rep ; 19(4): 1082-1097, 2023 05.
Article in English | MEDLINE | ID: mdl-36749553

ABSTRACT

Recently, we reported that forkhead box A2 (FOXA2) is required for the development of human pancreatic α- and ß-cells. However, whether miRNAs play a role in regulating pancreatic genes during pancreatic development in the absence of FOXA2 expression is largely unknown. Here, we aimed to capture the dysregulated miRNAs and to identify their pancreatic-specific gene targets in pancreatic progenitors (PPs) derived from wild-type induced pluripotent stem cells (WT-iPSCs) and from iPSCs lacking FOXA2 (FOXA2-/-iPSCs). To identify differentially expressed miRNAs (DEmiRs), and genes (DEGs), two different FOXA2-/-iPSC lines were differentiated into PPs. FOXA2-/- PPs showed a significant reduction in the expression of the main PP transcription factors (TFs) in comparison to WT-PPs. RNA sequencing analysis demonstrated significant reduction in the mRNA expression of genes involved in the development and function of exocrine and endocrine pancreas. Furthermore, miRNA profiling identified 107 downregulated and 111 upregulated DEmiRs in FOXA2-/- PPs compared to WT-PPs. Target prediction analysis between DEmiRs and DEGs identified 92 upregulated miRNAs, predicted to target 1498 downregulated genes in FOXA2-/- PPs. Several important pancreatic TFs essential for pancreatic development were targeted by multiple DEmiRs. Selected DEmiRs and DEGs were further validated using RT-qPCR. Our findings revealed that FOXA2 expression is crucial for pancreatic development through regulating the expression of pancreatic endocrine and exocrine genes targeted by a set of miRNAs at the pancreatic progenitor stage. These data provide novel insights of the effect of FOXA2 deficiency on miRNA-mRNA regulatory networks controlling pancreatic development and differentiation.


Subject(s)
Cell Differentiation , Gene Expression Regulation, Developmental , Hepatocyte Nuclear Factor 3-beta , Induced Pluripotent Stem Cells , Islets of Langerhans , MicroRNAs , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/physiology , MicroRNAs/genetics , Humans , Islets of Langerhans/cytology , Islets of Langerhans/growth & development , Islets of Langerhans/metabolism , Cell Differentiation/genetics , Cell Line
18.
Semin Cancer Biol ; 87: 1-16, 2022 12.
Article in English | MEDLINE | ID: mdl-36354097

ABSTRACT

The interplay between microRNAs (miRNAs) and pluripotency transcription factors (TFs) orchestrates the acquisition of cancer stem cell (CSC) features during the course of malignant transformation, rendering them essential cancer cell dependencies and therapeutic vulnerabilities. In this review, we discuss emerging themes in tumor heterogeneity, including the clonal evolution and the CSC models and their implications in resistance to cancer therapies, and then provide thorough coverage on the roles played by key TFs in maintaining normal and malignant stem cell pluripotency and plasticity. In addition, we discuss the reciprocal interactions between miRNAs and MYC, OCT4, NANOG, SOX2, and KLF4 pluripotency TFs and their contributions to tumorigenesis. We provide our view on the potential to interfere with key miRNA-TF networks through the use of RNA-based therapeutics as single agents or in combination with other therapeutic strategies, to abrogate the CSC state and render tumor cells more responsive to standard and targeted therapies.


Subject(s)
MicroRNAs , Neoplasms , Humans , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/pathology , Neoplastic Stem Cells/pathology , Transcription Factors/genetics
19.
Front Cardiovasc Med ; 9: 1024790, 2022.
Article in English | MEDLINE | ID: mdl-36277770

ABSTRACT

Stroke is the second leading cause of global mortality and continued efforts aim to identify predictive, diagnostic, or prognostic biomarkers to reduce the disease burden. Circulating microRNAs (miRNAs) have emerged as potential biomarkers in stroke. We performed comprehensive circulating miRNA profiling of ischemic stroke patients with or without type 2 diabetes mellitus (T2DM), an important risk factor associated with worse clinical outcomes in stroke. Serum samples were collected within 24 h of acute stroke diagnosis and circulating miRNAs profiled using RNA-Seq were compared between stroke patients with T2DM (SWDM; n = 92) and those without T2DM (SWoDM; n = 98). Our analysis workflow involved random allocation of study cohorts into discovery (n = 96) and validation (n = 94) datasets. Five miRNAs were found to be differentially regulated in SWDM compared to SWoDM patients. Hsa-miR-361-3p and -664a-5p were downregulated, whereas miR-423-3p, -140-5p, and -17-3p were upregulated. We also explored the gene targets of these miRNAs and investigated the downstream pathways associated with them to decipher the potential pathways impacted in stroke with diabetes as comorbidity. Overall, our novel findings provide important insights into the differentially regulated miRNAs, their associated pathways and potential utilization for clinical benefits in ischemic stroke patients with diabetes.

20.
Int J Mol Sci ; 23(18)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36142814

ABSTRACT

Triple-negative breast cancer (TNBC) patients exhibiting pathological complete response (pCR) have better clinical outcomes compared to those with residual disease (RD). Therefore, robust biomarkers that can predict pCR may help with triage and resource prioritization in patients with TNBC. Herein, we identified a gene panel predictive of RD and pCR in TNBC from the discovery (n = 90) treatment-naive tumor transcriptomic data. Eight RD-derived genes were identified as TNBC-essential genes, which were highly predicative of overall survival (OS) and relapse-free survival (RFS) in an additional cohort of basal breast cancer (n = 442). Mechanistically, targeted depletion of the eight genes reduced the proliferation potential of TNBC cell models, while most remarkable effects were for combined SLC39A7, TIMM13, BANF1, and MVD knockdown in conjunction with doxorubicin. Orthogonal partial least squares-discriminant analysis (OPLS-DA) and receiver operating characteristic curve (ROC) analyses revealed significant predictive power for the identified gene panels with an area under the curve (AUC) of 0.75 for the validation cohort (n = 50) to discriminate RD from pCR. Protein-Protein Interaction (PPI) network analysis of the pCR-derived gene signature identified an 87-immune gene signature highly predictive of pCR, which correlated with better OS, RFS, and distant-metastasis-free survival (DMFS) in an independent cohort of basal and, to a lesser extent, HER2+ breast cancer. Our data have identified gene signatures predicative of RD and pCR in TNBC with potential clinical implications.


Subject(s)
Breast Neoplasms , Cation Transport Proteins , Triple Negative Breast Neoplasms , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/pathology , Cation Transport Proteins/genetics , Doxorubicin/therapeutic use , Female , Humans , Neoadjuvant Therapy , Neoplasm Recurrence, Local/drug therapy , Neoplasm, Residual/drug therapy , Transcriptome , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...