Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Gels ; 9(3)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36975621

ABSTRACT

Bioprinting nerve conduits supplemented with glial or stem cells is a promising approach to promote axonal regeneration in the injured nervous system. In this study, we examined the effects of different compositions of bioprinted fibrin hydrogels supplemented with Schwann cells and mesenchymal stem cells (MSCs) on cell viability, production of neurotrophic factors, and neurite outgrowth from adult sensory neurons. To reduce cell damage during bioprinting, we analyzed and optimized the shear stress magnitude and exposure time. The results demonstrated that fibrin hydrogel made from 9 mg/mL of fibrinogen and 50IE/mL of thrombin maintained the gel's highest stability and cell viability. Gene transcription levels for neurotrophic factors were significantly higher in cultures containing Schwann cells. However, the amount of the secreted neurotrophic factors was similar in all co-cultures with the different ratios of Schwann cells and MSCs. By testing various co-culture combinations, we found that the number of Schwann cells can feasibly be reduced by half and still stimulate guided neurite outgrowth in a 3D-printed fibrin matrix. This study demonstrates that bioprinting can be used to develop nerve conduits with optimized cell compositions to guide axonal regeneration.

3.
Methods Mol Biol ; 2235: 47-59, 2021.
Article in English | MEDLINE | ID: mdl-33576970

ABSTRACT

We report the use of self-assembled peptide (F2/S) hydrogels and cellular metabolomics to identify a number of innate molecules that are integral to the metabolic processes which drive cellular differentiation of multipotent pericyte stem cells. The culture system relies solely on substrate mechanics to induce differentiation in the absence of traditional differentiation media and therefore is a non-invasive approach to assessing cellular behavior at the molecular level and identifying key metabolites in this process. This novel approach demonstrates that simple metabolites can provide an alternative means to direct stem cell differentiation and that biomaterials can be used to identify them simply and quickly.


Subject(s)
Metabolomics/methods , Pericytes/cytology , Pericytes/transplantation , Animals , Biocompatible Materials/metabolism , Capillaries/cytology , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cells, Cultured , Endothelial Cells/cytology , Humans , Hydrogels/chemistry , Microvessels/cytology , Multipotent Stem Cells/drug effects , Peptides/chemistry , Pericytes/metabolism , Phenotype
5.
J Tissue Eng ; 9: 2041731418794007, 2018.
Article in English | MEDLINE | ID: mdl-30202512

ABSTRACT

The regenerative potential of skeletal stem cells provides an attractive prospect to generate bone tissue needed for musculoskeletal reparation. A central issue remains efficacious, controlled cell differentiation strategies to aid progression of cell therapies to the clinic. The nacre surface from Pinctada maxima shells is known to enhance bone formation. However, to date, there is a paucity of information on the role of the topography of P. maxima surfaces, nacre and prism. To investigate this, nacre and prism topographical features were replicated onto polycaprolactone and skeletal stem cell behaviour on the surfaces studied. Skeletal stem cells on nacre surfaces exhibited an increase in cell area, increase in expression of osteogenic markers ALP (p < 0.05) and OCN (p < 0.01) and increased metabolite intensity (p < 0.05), indicating a role of nacre surface to induce osteogenic differentiation, while on prism surfaces, skeletal stem cells did not show alterations in cell area or osteogenic marker expression and a decrease in metabolite intensity (p < 0.05), demonstrating a distinct role for the prism surface, with the potential to maintain the skeletal stem cell phenotype.

6.
Sci Rep ; 7(1): 6895, 2017 07 31.
Article in English | MEDLINE | ID: mdl-28761049

ABSTRACT

Differentiation of stem cells to chondrocytes in vitro usually results in a heterogeneous phenotype. This is evident in the often detected over expression of type X collagen which, in hyaline cartilage structure is not characteristic of the mid-zone but of the deep-zone ossifying tissue. Methods to better match cartilage developed in vitro to characteristic in vivo features are therefore highly desirable in regenerative medicine. This study compares phenotype characteristics between pericytes, obtained from human adipose tissue, differentiated using diphenylalanine/serine (F2/S) peptide hydrogels with the more widely used chemical induced method for chondrogenesis. Significantly higher levels of type II collagen were noted when pericytes undergo chondrogenesis in the hydrogel in the absence of induction media. There is also a balanced expression of collagen relative to aggrecan production, a feature which was biased toward collagen production when cells were cultured with induction media. Lastly, metabolic profiles of each system show considerable overlap between both differentiation methods but subtle differences which potentially give rise to their resultant phenotype can be ascertained. The study highlights how material and chemical alterations in the cellular microenvironment have wide ranging effects on resultant tissue type.


Subject(s)
Adipose Tissue/cytology , Chondrocytes/cytology , Peptides/chemistry , Pericytes/cytology , Adipose Tissue/metabolism , Biomarkers , Cell Differentiation , Cells, Cultured , Chondrocytes/metabolism , Chondrogenesis , Collagen Type II/metabolism , Dipeptides , Humans , Hydrogels/chemistry , Metabolomics , Pericytes/metabolism , Phenotype , Phenylalanine/analogs & derivatives , Phenylalanine/chemistry , Tissue Engineering/methods
7.
ACS Biomater Sci Eng ; 3(8): 1710-1718, 2017 Aug 14.
Article in English | MEDLINE | ID: mdl-28824958

ABSTRACT

Sandwichlike (SW) cultures are engineered as a multilayer technology to simultaneously stimulate dorsal and ventral cell receptors, seeking to mimic cell adhesion in three-dimensional (3D) environments in a reductionist manner. The effect of this environment on cell differentiation was investigated for several cell types cultured in standard growth media, which promotes proliferation on two-dimensional (2D) surfaces and avoids any preferential differentiation. First, murine C2C12 myoblasts showed specific myogenic differentiation. Human mesenchymal stem cells (hMSCs) of adipose and bone marrow origin, which can differentiate toward a wider variety of lineages, showed again myodifferentiation. Overall, this study shows myogenic differentiation in normal growth media for several cell types under SW conditions, avoiding the use of growth factors and cytokines, i.e., solely by culturing cells within the SW environment. Mechanistically, it provides further insights into the balance between integrin adhesion to the dorsal substrate and the confinement imposed by the SW system.

8.
ACS Nano ; 11(7): 6717-6727, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28665112

ABSTRACT

It is counterintuitive that invertebrate shells can induce bone formation, yet nacre, or mother of pearl, from marine shells is both osteoinductive and osteointegrative. Nacre is composed of aragonite (calcium carbonate) and induces production of vertebrate bone (calcium phosphate). Exploited by the Mayans for dental implants, this remarkable phenomenon has been confirmed in vitro and in vivo, yet the characteristic of nacre that induces bone formation remains unknown. By isolating nacre topography from its inherent chemistry in the production of polycaprolactone (PCL) nacre replica, we show that, for mesenchymal stem cells, nacre topography is osteoinductive. Gene expression of specific bone marker proteins, osteopontin, osteocalcin, osteonectin, and osterix, is increased 10-, 2-, 1.7-, and 1.8-fold, respectively, when compared to planar PCL. Furthermore, we demonstrate that bone tissue that forms in response to the physical topographical features of nacre has a higher crystallinity than bone formed in response to chemical cues with a full width half-maximum for PO43- Raman shift of 7.6 ± 0.7 for mineral produced in response to nacre replica compared to a much broader 34.6 ± 10.1 in response to standard osteoinductive medium. These differences in mineral product are underpinned by differences in cellular metabolism. This observation can be exploited in the design of bone therapies; a matter that is most pressing in light of a rapidly aging human population.


Subject(s)
Biocompatible Materials/chemistry , Mesenchymal Stem Cells/cytology , Nacre/chemistry , Osteogenesis , Pinctada/chemistry , Polyesters/chemistry , Animals , Cell Differentiation , Humans , Osteoblasts/cytology , Surface Properties
9.
ACS Nano ; 10(7): 6667-79, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27322014

ABSTRACT

Out of their niche environment, adult stem cells, such as mesenchymal stem cells (MSCs), spontaneously differentiate. This makes both studying these important regenerative cells and growing large numbers of stem cells for clinical use challenging. Traditional cell culture techniques have fallen short of meeting this challenge, but materials science offers hope. In this study, we have used emerging rules of managing adhesion/cytoskeletal balance to prolong MSC cultures by fabricating controllable nanoscale cell interfaces using immobilized peptides that may be enzymatically activated to change their function. The surfaces can be altered (activated) at will to tip adhesion/cytoskeletal balance and initiate differentiation, hence better informing biological mechanisms of stem cell growth. Tools that are able to investigate the stem cell phenotype are important. While large phenotypical differences, such as the difference between an adipocyte and an osteoblast, are now better understood, the far more subtle differences between fibroblasts and MSCs are much harder to dissect. The development of technologies able to dynamically navigate small differences in adhesion are critical in the race to provide regenerative strategies using stem cells.


Subject(s)
Cell Adhesion , Cell Differentiation , Mesenchymal Stem Cells , Cell Culture Techniques , Cell Proliferation , Nanotechnology , Osteoblasts
10.
ACS Nano ; 8(10): 9941-53, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25227207

ABSTRACT

It is emerging that nanotopographical information can be used to induce osteogenesis from mesenchymal stromal cells from the bone marrow, and it is hoped that this nanoscale bioactivity can be utilized to engineer next generation implants. However, the osteogenic mechanism of surfaces is currently poorly understood. In this report, we investigate mechanism and implicate bone morphogenic protein (BMP) in up-regulation of RUNX2 and show that RUNX2 and its regulatory miRNAs are BMP sensitive. Our data demonstrate that osteogenic nanotopography promotes colocalization of integrins and BMP2 receptors in order to enhance osteogenic activity and that vitronectin is important in this interface. This provides insight that topographical regulation of adhesion can have effects on signaling cascades outside of cytoskeletal signaling and that adhesions can have roles in augmenting BMP signaling.


Subject(s)
Bone Morphogenetic Proteins/physiology , MicroRNAs/genetics , Nanotechnology , Osteogenesis , Signal Transduction , Bone Morphogenetic Proteins/metabolism , Cells, Cultured , Humans , Real-Time Polymerase Chain Reaction
11.
ACS Nano ; 6(11): 10239-49, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-23072705

ABSTRACT

It is emerging that mesenchymal stem cell (MSC) metabolic activity may be a key regulator of multipotency. The metabolome represents a "snapshot" of the stem cell phenotype, and therefore metabolic profiling could, through a systems biology approach, offer and highlight critical biochemical pathways for investigation. To date, however, it has remained difficult to undertake unbiased experiments to study MSC multipotency in the absence of strategies to retain multipotency without recourse to soluble factors that can add artifact to experiments. Here we apply a nanotopographical systems approach linked to metabolomics to regulate plasticity and demonstrate rapid metabolite reorganization, allowing rational selection of key biochemical targets of self-renewal (ERK1/2, LDL, and Jnk). We then show that these signaling effectors regulate functional multipotency.


Subject(s)
Metabolome/physiology , Nanostructures/chemistry , Osteoblasts/cytology , Osteoblasts/metabolism , Osteogenesis/physiology , Stem Cells/cytology , Stem Cells/metabolism , Cells, Cultured , Humans , Nanostructures/ultrastructure , Proteome , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...