Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(10)2023 10 05.
Article in English | MEDLINE | ID: mdl-37896827

ABSTRACT

Shrimp aquaculture has become a vital industry, meeting the growing global demand for seafood. Shrimp viral diseases have posed significant challenges to the aquaculture industry, causing major economic losses worldwide. Conventional treatment methods have proven to be ineffective in controlling these diseases. However, recent advances in RNA interference (RNAi) technology have opened new possibilities for combating shrimp viral diseases. This cutting-edge technology uses cellular machinery to silence specific viral genes, preventing viral replication and spread. Numerous studies have shown the effectiveness of RNAi-based therapies in various model organisms, paving the way for their use in shrimp health. By precisely targeting viral pathogens, RNAi has the potential to provide a sustainable and environmentally friendly solution to combat viral diseases in shrimp aquaculture. This review paper provides an overview of RNAi-based therapy and its potential as a game-changer for shrimp viral diseases. We discuss the principles of RNAi, its application in combating viral infections, and the current progress made in RNAi-based therapy for shrimp viral diseases. We also address the challenges and prospects of this innovative approach.


Subject(s)
RNAi Therapeutics , Virus Diseases , Animals , RNA Interference , Virus Diseases/genetics , Virus Diseases/therapy , Crustacea , Aquaculture
2.
BMC Res Notes ; 12(1): 163, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30902068

ABSTRACT

OBJECTIVE: Planarians including Dugesia ryukyuensis (Dr) have strong regenerative abilities that require enhanced DNA replication. Knockdown of the DUT gene in Dr, which encodes deoxyuridine 5'-triphosphate pyrophosphatase (dUTPase), promotes DNA fragmentation, inhibits regeneration, and eventually leads to death. dUTPase catalyzes the hydrolysis of dUTP to dUMP and pyrophosphate. dUTPase is known to prevent uracil misincorporation in DNA by balancing the intracellular ratio between dUTP and dTTP, and contributes to genome stability. Nevertheless, the catalytic performance of Dr-dUTPase has not been reported. RESULTS: To confirm the catalytic activity of Dr-dUTPase, we cloned and expressed Dr-DUT in E. coli. Then, we purified Dr-dUTPase using His-tag and removed the tag with thrombin. The resulting Dr-dUTPase had the leading peptide Gly-Ser-His- originating from the vector at the amino terminus, and a mutation, Arg66Lys, to remove the internal thrombin site. We observed the hydrolysis of dUTP by Dr-dUTPase using Cresol Red as a proton sensor. The Km for dUTP was determined to be 4.0 µM, which is similar to that for human dUTPase. Dr-dUTPase exhibited a preference for dUTP over the other nucleotides. We conclude the Dr-dUTPase has catalytic activity.


Subject(s)
Biocatalysis , Planarians/enzymology , Pyrophosphatases/metabolism , Regeneration/physiology , Animals , Pyrophosphatases/isolation & purification
3.
Mol Reprod Dev ; 85(3): 188-196, 2018 03.
Article in English | MEDLINE | ID: mdl-29405473

ABSTRACT

The DUT gene encodes Deoxyuridine triphosphatase (dUTPase), which is involved in nucleotide metabolism. dUTPase prevents uracil misincorporation in DNA by balancing the intracellular ratio between dUTP and dTTP. This study aimed to investigate the role of Dr-dut gene in the planarian Dugesia ryukyuensis by assessing the consequences of Dr-dut silencing on known phenomena, including regeneration following amputation and radiation damage. We functionally disrupted planarian Dr-dut mRNA by feeding RNAi-containing food to animals. Dr-dut RNAi resulted in the death of planarians in 28 days, and elevated double-stranded DNA breakage. Expression of the DNA damage response gene Dr-atm and the DNA repair genes Dr-rad51 and Dr-rad51c temporarily increased, and then decreased following the onset of feeding. When RNAi-treated planarians were amputated, both head and tail parts failed to regenerate, and the animals died in 25 and 29 days, respectively. Administration of 5-fluorouracil (5-FU) also resulted in death and DNA damage, and synergistically caused higher genotoxicity in planarian fed Dr-dut RNAi-containing food.


Subject(s)
DNA Damage/genetics , Planarians/genetics , Pyrophosphatases/genetics , Animals , Antimetabolites/pharmacology , DNA Damage/drug effects , Fluorouracil/pharmacology , Gene Silencing , Planarians/drug effects , RNA Interference
4.
Sci Rep ; 7(1): 3747, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28623336

ABSTRACT

The opportunistic fish pathogen, Enterococcus faecalis has been reported to cause mass mortality in several fish species in different countries. The objectives of this study were to (i) identify E. faecalis from the diseased fishes through molecular techniques; (ii) assess the antibiotic susceptibility profile of E. faecalis isolates; and (iii) control disease in tilapia fish by treatment with medicinal plant extracts. A total of 48 isolates were phenotypically identified as Enterococcus species from tilapia, stinging catfish and walking catfish cultivated in several fish farms in Gazipur. Ten randomly selected isolates were identified as E. faecalis by 16S rRNA gene sequencing. Artificial infection revealed that most of the isolates caused moderate to high mortality in fishes with characteristic disease symptoms. These isolates exhibited resistance to multiple antibiotics in vitro. Bioassay revealed that organic extracts of Tamarindus indica and Emblica officinalis leaves, Allium sativum bulb, and Syzygium aromaticum bud inhibited the growth of E. faecalis. Methanol extracts of A. sativum and methanol and acetone extracts of S. aromaticum significantly reduced the mortality of fish artificially infected with E. faecalis as both preventive and therapeutic agents. This is the first report on molecular identification, and herbal control of fish pathogenic E. faecalis in Bangladesh.


Subject(s)
Catfishes/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Enterococcus faecalis , Fish Diseases , Gram-Positive Bacterial Infections , Plant Extracts/pharmacology , Tilapia/microbiology , Animals , Drug Resistance, Multiple, Bacterial/drug effects , Enterococcus faecalis/genetics , Enterococcus faecalis/isolation & purification , Enterococcus faecalis/metabolism , Fish Diseases/drug therapy , Fish Diseases/genetics , Fish Diseases/microbiology , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/genetics , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/veterinary , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...