Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Biol (Noisy-le-grand) ; 69(5): 150-155, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37571884

ABSTRACT

A concoction of unhealthy eating, inactivity, and the adverse effects of specific drugs brings on obesity. The primary cause of Obesity is the storage of too much energy and triglycerides in adipocytes, particularly white adipose tissue (WAT). In addition to modifying one's lifestyle, anti-obesity medicines are increasingly used as adjuvant therapy. Flavonoids are the major class of compounds having significant biological impacts and health-improving properties. To find novel flavonoid compounds that fight obesity using computational drug design techniques. This work targets 1DI protein to predict new flavonoid compounds that fight obesity. The study uses computational approaches to anticipate potential anti-obesity/inflammatory flavonoid compounds against obesity to prevent WAT differentiation by targeting ID-1, a DNA-binding protein inhibitor. Our study led to the identification of the protein target inhibitor lead CID: 5280443, which was found to be a potent inhibitor of the receptor. According to the findings of this study, this bio-active molecule may be used as a lead for the development of drugs that preferentially fight obesity without interfering with the functions of the human proteasome. The scientific community will benefit from these discoveries, which could aid in the creation of new medications that treat obesity more successfully.


Subject(s)
Anti-Obesity Agents , DNA-Binding Proteins , Humans , DNA-Binding Proteins/metabolism , Obesity/drug therapy , Obesity/metabolism , Adipose Tissue, White/metabolism , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Adipocytes , Adipose Tissue, Brown/metabolism
2.
BMC Psychiatry ; 22(1): 704, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376882

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic had a devastating effect on college students worldwide. Here, the authors aimed to determine the prevalence of anxiety and its related coping strategies, provide a theoretical basis for understanding self-prescription, and identify the factors contributing to stress and anxiety in medical students during the pandemic. METHODS: The authors conducted a cross-sectional study among medical students in Saudi Arabia from September to November 2020. They assessed anxiety using the GAD-7 scale based on seven core symptoms. The authors also examined perceived psychological stress using a single-item measure of stress, the factors contributing to stress during the transition to online learning and examinations, and related coping strategies. The Statistical Package for Social Sciences (SPSS) version 26.0 was used to examine the data for both descriptive and inferential analyses. Chi-square test, one-way ANOVA, and univariate linear regression were used to test the research hypotheses. RESULTS: The authors collected and analyzed data from 7116 medical students distributed across 38 medical colleges. Among them, 40% reported moderate to severe anxiety symptoms. Pre-clinical and female students experienced more stress than clinical and male students. 12.19% (n = 868) of respondents reported using medication during their college years. Among those, 58.9% (n = 512) had moderate to severe anxiety, and the most commonly used drug was propranolol (45.4%, n = 394). Among the studied sample, 40.4% (n = 351) decreased their medication use after switching to online teaching. Most students used these medications during the final exam (35.8%, n = 311) and before the oral exam (35.5%, n = 308). In terms of coping strategies, males were much more likely to use substances than females, who mainly resorted to other strategies. CONCLUSIONS: This study provides a national overview of the impact of COVID-19 on the mental health of medical students. The results indicated that the pandemic is associated with highly significant levels of anxiety. These findings can provide theoretical evidence for the need for supportive psychological assistance from academic leaders in this regard.


Subject(s)
COVID-19 , Education, Distance , Students, Medical , Male , Female , Humans , Pandemics , Students, Medical/psychology , Prevalence , SARS-CoV-2 , Cross-Sectional Studies , Adaptation, Psychological , Anxiety/epidemiology , Anxiety/psychology
3.
Methods Mol Biol ; 2102: 509-528, 2020.
Article in English | MEDLINE | ID: mdl-31989574

ABSTRACT

Host cell reactivation (HCR) is a transfection-based assay in which intact cells repair damage localized to exogenous DNA. This chapter provides instructions for the application of this technique, using as an exemplar UV irradiation as a source of damage to a luciferase reporter plasmid. Through measurement of the activity of a successfully transcribed and translated reporter enzyme, the amount of damaged plasmid that a cell can "reactivate" or repair and express can be quantitated. Different DNA repair pathways can be analyzed by this technique by damaging the reporter plasmid in different ways. Since it involves repair of a transcriptionally active gene, when applied to UV damage the HCR assay measures the capacity of the host cells to perform transcription-coupled repair (TCR), a subset of the overall nucleotide excision repair pathway that specifically targets transcribed gene sequences. This method features two ways to perform the assay using expression vectors with luciferase and beta galactosidase, as well as with firefly luciferase and Renilla luciferase using the same luminometer.


Subject(s)
DNA Repair/genetics , Luciferases/metabolism , Transfection/methods , Cell Line , Genes, Reporter , Genetic Techniques , Genetic Vectors , Humans , Luciferases/genetics , Phosphatidylethanolamines , Plasmids/radiation effects , Proteins/analysis , Proteins/isolation & purification , Proteins/metabolism , Transcription, Genetic , Ultraviolet Rays , Workflow , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...