Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 30(5): e17298, 2024 May.
Article in English | MEDLINE | ID: mdl-38712640

ABSTRACT

Diversified crop rotations have been suggested to reduce grain yield losses from the adverse climatic conditions increasingly common under climate change. Nevertheless, the potential for climate change adaptation of different crop rotational diversity (CRD) remains undetermined. We quantified how climatic conditions affect small grain and maize yields under different CRDs in 32 long-term (10-63 years) field experiments across Europe and North America. Species-diverse and functionally rich rotations more than compensated yield losses from anomalous warm conditions, long and warm dry spells, as well as from anomalous wet (for small grains) or dry (for maize) conditions. Adding a single functional group or crop species to monocultures counteracted yield losses from substantial changes in climatic conditions. The benefits of a further increase in CRD are comparable with those of improved climatic conditions. For instance, the maize yield benefits of adding three crop species to monocultures under detrimental climatic conditions exceeded the average yield of monocultures by up to 553 kg/ha under non-detrimental climatic conditions. Increased crop functional richness improved yields under high temperature, irrespective of precipitation. Conversely, yield benefits peaked at between two and four crop species in the rotation, depending on climatic conditions and crop, and declined at higher species diversity. Thus, crop species diversity could be adjusted to maximize yield benefits. Diversifying rotations with functionally distinct crops is an adaptation of cropping systems to global warming and changes in precipitation.


Subject(s)
Climate Change , Crops, Agricultural , Zea mays , Crops, Agricultural/growth & development , Zea mays/growth & development , North America , Europe , Edible Grain/growth & development , Agriculture/methods , Biodiversity , Crop Production/methods
2.
J Environ Manage ; 95 Suppl: S233-7, 2012 Mar.
Article in English | MEDLINE | ID: mdl-20708330

ABSTRACT

Mercury is a highly toxic pollutant with expensive clean up, because of its accumulative and persistent character in the biota. The objective of this work was to evaluate the effectiveness of Silene vulgaris, facultative metallophyte which have populations on both non-contaminated and metalliferous soils, to uptake Hg from artificially polluted soils. A pot experiment was carried out in a rain shelter for a full growth period. Two soils (C pH = 8.55 O.M. 0.63% and A pH = 7.07 O.M. 0.16%) were used, previously contaminated with Hg as HgCl(2) (0.6 and 5.5 mg Hg kg(-1) soil). Plants grew healthy and showed good appearance throughout the study without significantly decreasing biomass production. Mercury uptake by plants increased with the mercury concentration found in both soils. Differences were statistically significant between high dosage and untreated soil. The fact that S. vulgaris retains more mercury in root than in shoot and also, the well known effectiveness of these plants in the recovering of contaminated soils makes S. vulgaris a good candidate to phytostabilization technologies.


Subject(s)
Mercury/pharmacokinetics , Silene/growth & development , Silene/metabolism , Soil Pollutants/pharmacokinetics , Biodegradation, Environmental , Biomass , Plant Roots/metabolism , Plant Shoots/metabolism , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...