Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Genomics ; 55(12): 634-646, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37811720

ABSTRACT

Congenital heart disease (CHD) is one of the most prevalent neonatal congenital anomalies. To catalog the putative candidate CHD risk genes, we collected 16,349 variants [single-nucleotide variants (SNVs) and Indels] impacting 8,308 genes in 3,166 CHD cases for a comprehensive meta-analysis. Using American College of Medical Genetics (ACMG) guidelines, we excluded the 0.1% of benign/likely benign variants and the resulting dataset consisted of 83% predicted loss of function variants and 17% missense variants. Seventeen percent were de novo variants. A stepwise analysis identified 90 variant-enriched CHD genes, of which six (GPATCH1, NYNRIN, TCLD2, CEP95, MAP3K19, and TTC36) were novel candidate CHD genes. Single-cell transcriptome cluster reconstruction analysis on six CHD tissues and four controls revealed upregulation of the top 10 frequently mutated genes primarily in cardiomyocytes. NOTCH1 (highest number of variants) and MYH6 (highest number of recurrent variants) expression was elevated in endocardial cells and cardiomyocytes, respectively, and 60% of these gene variants were associated with tetralogy of Fallot and coarctation of the aorta, respectively. Pseudobulk analysis using the single-cell transcriptome revealed significant (P < 0.05) upregulation of both NOTCH1 (endocardial cells) and MYH6 (cardiomyocytes) in the control heart data. We observed nine different subpopulations of CHD heart cardiomyocytes of which only four were observed in the control heart. This is the first comprehensive meta-analysis combining genomics and CHD single-cell transcriptomics, identifying the most frequently mutated CHD genes, and demonstrating CHD gene heterogeneity, suggesting that multiple genes contribute to the phenotypic heterogeneity of CHD. Cardiomyocytes and endocardial cells are identified as major CHD-related cell types.NEW & NOTEWORTHY Congential heart disease (CHD) is one of the most prevalent neonatal congenital anomalies. We present a comprehensive analysis combining genomics and CHD single-cell transcriptome. Our study identifies 90 potential candidate CHD risk genes of which 6 are novel. The risk genes have heterogenous expression suggestive of multiple genes contributing to the phenotypic heterogeneity of CHD. Cardiomyocytes and endocardial cells are identified as major CHD-related cell types.


Subject(s)
Aortic Coarctation , Heart Defects, Congenital , Infant, Newborn , Humans , Myocytes, Cardiac , Endothelial Cells , Heart Defects, Congenital/genetics , Mutation/genetics , MAP Kinase Kinase Kinases/genetics
2.
Pediatr Rheumatol Online J ; 21(1): 64, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37386568

ABSTRACT

OBJECTIVE: This is a comprehensive characteristic study of Kawasaki disease (KD) and Multi system inflammatory syndrome in children (MIS-C) in the Middle East that creates a formula to differentiate between the two. METHODS: We conducted a descriptive comparative study of KD and MIS-C in the United Arab Emirates. Retrospective MIS-C and KD cohorts were recruited between January 2017 until August 2021.We compared clinical and laboratory characteristics between both groups. Our data were compared with 87 patients with KD or MIS-C from the literature. RESULTS: We report on123 patients. Sixty-seven (54%) met the criteria for KD (36 male, 43 Arab), and fifty-six (46%) met the criteria for MIS-C (28 male, 35 Arab). The median age was 2.2 years range (0.15-10.7) in the KD group and 7.3 years (0.7-15.2) in the MIS-C group (P < 0.001). The clinical features on admission showed an increase in gastrointestinal manifestations in MIS-C compared with KD (84% vs. 31%, P < 0.001). Laboratory tests on admission revealed a significant increase in the following tests in KD compared with MIS-C; white blood cells (mean 16.30 10(3) µcL vs. 11.56 10(3) µcL, P < 0.001), absolute neutrophils (mean 10.72 10(3) µcL vs. 8.21 10(3) µcL, P 0.008), absolute lymphocytes (mean 3.92 10(3) µcL vs. 2.59 10(3) µcL, P 0.003), erythrocyte sedimentation rate (mean 73 mm/hr vs. 51 mm/hr, P < 0.001) and platelets (median {390 10(3) µcL vs. 236 10(3) µcL, P < 0.001}). In contrast, procalcitonin and ferritin were increased in the MIS-C group (2.4 )ng/mL, 370 ng/mL; P < 0.001). Cardiac dysfunction and admission to the pediatric intensive care unit were higher in MIS-C than in KD (21% vs. 8% and 33% vs. 7.5%, respectively, P < 0.001). CONCLUSION: This study showed vast similarities between KD and MIS-C, suggesting that they lie along the same clinical spectrum. However, there are several differences between the two disease entities suggesting that MIS-C most likely represents a new severe variant of KD. Based on our findings in this study, we created a formula to differentiate between KD and MIS-C.


Subject(s)
Mucocutaneous Lymph Node Syndrome , Child , Child, Preschool , Humans , Infant , Male , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/diagnosis , Retrospective Studies , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/etiology , Female , Middle Eastern People , United Arab Emirates , Adolescent , Diagnosis, Differential
SELECTION OF CITATIONS
SEARCH DETAIL
...