Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Discov Med ; 36(184): 959-970, 2024 May.
Article in English | MEDLINE | ID: mdl-38798255

ABSTRACT

BACKGROUND: Infertility is a worldwide medical issue in which infection is recognized to play a major role. Pathogens trigger various mechanisms that impact fertility, either directly by affecting the physiological indices of semen or indirectly by disrupting the process of spermatogenesis. In the current work, the effect of in-vitro cultivation of Escherichia coli (E. coli), Candida non-albicans (C. non-albicans), and Trichomonas vaginalis (T. vaginalis) (as the most frequently reported sexually transmitted infections) was assessed on the physiological functions of the spermatozoa and the chemical characteristics of the seminal fluid. METHOD: The semen samples were exposed to cultures of E. coli, C. non-albicans, and T. vaginalis. The study analyzed the changes in motility, agglutination, viability, DNA fragmentation index (DFI%), seminal pH, and biochemical parameters at 1/2, 1, 1.5, 2, 2.5, 3.5 and 4 hours. RESULTS: Incubation of the semen samples with E. coli resulted in a progressive increase in agglutination, pH, and nitrite. The seminal glucose and the sperm motility, on the other hand, were reduced. The sperm vitality and seminal protein remained unaffected. C. non-albicans induced three forms of agglutination (head-to-head, tail-to-tail, and head-to-tail), lowered pH values and decreased the sperm motility, but did not alter the seminal protein, glucose, nitrite, nor the spermatozoa viability at the different tested time intervals. T. vaginalis resulted in increased seminal protein, and reduced glucose, pH, and motility. It also induced minimal agglutination and caused unchanged nitrite and sperm viability. The DFI% was increased in all pathogens with the C. non-albicans showing the highest DNA fragmentation index. CONCLUSION: Urogenital infection with E. coli, C. non-albicans, or T. vaginalis is assumed to affect the quality of semen through DNA fragmentation, agglutination and altered seminal chemical microenvironment.


Subject(s)
Escherichia coli , Semen , Sperm Motility , Trichomonas vaginalis , Trichomonas vaginalis/physiology , Male , Humans , Semen/microbiology , Sperm Motility/drug effects , Candida/physiology , Spermatozoa/microbiology , DNA Fragmentation , Hydrogen-Ion Concentration
2.
PeerJ ; 12: e17084, 2024.
Article in English | MEDLINE | ID: mdl-38529311

ABSTRACT

Background: Malaria has been appraised as a significant vector-borne parasitic disease with grave morbidity and high-rate mortality. Several challenges have been confronting the efficient diagnosis and treatment of malaria. Method: Google Scholar, PubMed, Web of Science, and the Egyptian Knowledge Bank (EKB) were all used to gather articles. Results: Diverse biochemical and physiological indices can mirror complicated malaria e.g., hypoglycemia, dyslipidemia, elevated renal and hepatic functions in addition to the lower antioxidant capacity that does not only destroy the parasite but also induces endothelial damage. Multiple trials have been conducted to improve recent points of care in malaria involving biosensors, lap on-chip, and microdevices technology. Regarding recent therapeutic trials, chemical falcipain inhibitors and plant extracts with anti-plasmodial activities are presented. Moreover, antimalaria nano-medicine and the emergence of nanocarrier (either active or passive) in drug transportation are promising. The combination therapeutic trials e.g., amodiaquine + artemether + lumefantrine are presented to safely counterbalance the emerging drug resistance in addition to the Tafenoquine as a new anti-relapse therapy. Conclusion: Recognizing the pathophysiology indices potentiate diagnosis of malaria. The new points of care can smartly manipulate the biochemical and hematological alterations for a more sensitive and specific diagnosis of malaria. Nano-medicine appeared promising. Chemical and plant extracts remain points of research.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Humans , Antimalarials/therapeutic use , Malaria, Falciparum/drug therapy , Malaria/diagnosis , Plant Extracts/therapeutic use
3.
Discov Med ; 36(181): 217-233, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38409828

ABSTRACT

The microbiota community is composed of bacteria, fungi, viruses, and protists that exert symbiotic effects within the human body. Unlike microbiota, parasites are characteristically reliant on their hosts to thrive and flourish, producing toxic metabolites that agitate microbiota and disturb homeostasis. The proper management of parasitic infections addresses several important challenges related to low socioeconomic status and emergent resistance. Therefore, understanding the microbiota's role in interactions with hosts and parasites is crucial for managing parasite diseases with fewer economic and adverse effects associated with pharmaceutical interventions. The current review was divided into three sections. Section 1 focused on the mutual microbiota-host interaction through the purinergic P2X7 receptor (P2X7R) and secretory immunoglobulin A (SIgA). The P2X7R is an abundant intestinal cation channel that is crucial in mucosal immunity, facilitated by SIgA-mediated protection in both innate and adaptive immunity. This study demonstrated that microbiota continually "teach and train" host immunity to attain homeostasis via SIgA production (in T cell-independent and T cell-dependent pathways) and the purinergic receptor P2X7R. In addition, we discussed the potential of manipulating SIgA and P2X7R in immune therapies targeting parasitic infections. Section 2 exhibited parasite-microbiota (microbe-microbe) interactions wherein each can indirectly affect one another through physical and immunogenic alterations and directly via predation, bactericidal protein production, and overlapping of nutrient resources. Thus, microbe-microbe interactions appeared to be multifaceted and species-dependent. Section 3 showed the relationship between microbiota and specific parasites, and the promising role of probiotics. In this section, the review discussed examples of tissue, blood, gastrointestinal, genitourinary, and respiratory parasitic diseases, while highlighting the associated dysbiosis. Furthermore, Section 3 acknowledged the importance of "strain-dependent" biotherapy to boost beneficial microbiota, modulate immunity, and exert anti-parasitic effects.


Subject(s)
Microbiota , Parasites , Parasitic Diseases , Animals , Humans , Parasites/metabolism , Receptors, Purinergic P2X7 , Immunoglobulin A, Secretory/metabolism
4.
Cureus ; 16(1): e51591, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38313898

ABSTRACT

Aberrant origin of the vertebral artery is a rare case. Due to its important clinical significance during operations in the superior mediastinum and the root of the neck, the variations of this artery should be clarified, and any cadaveric case should be explored specifically if accompanied by any vascular problem. In this cadaveric case, the embalmed male cadaver was found to have a pacemaker wire inserted in the heart through the superior vena cava, denoting a vascular incompetence due to sinus arrhythmia. The left vertebral artery was found to originate from the aortic arch, positioned between the left common carotid artery and the left subclavian artery. It traveled upward behind the left common carotid artery, passing in front of the stellate ganglion and the ventral rami of cervical spinal nerves before entering the left foramen transversarium of the C6 vertebra. This atypical left vertebral artery, which had an unusual origin from the arch of aorta, was distinct from the right vertebral artery, that typically arises from the right subclavian artery. Also, the left atypical artery was found to be narrower and longer than the right one. Additionally, the left common carotid artery exhibited an unusual origin from the beginning of the brachiocephalic trunk. The present case report would be of significance for vascular surgeons in designing surgical intervention in the root of the neck and for clinicians responsible for monitoring patients with variant vertebral arteries to effectively manage potential vascular complications.

5.
J. appl. oral sci ; 29: e20201080, 2021. tab, graf
Article in English | LILACS | ID: biblio-1340115

ABSTRACT

Abstract Acute and chronic stresses affect the salivary glands, representing the source of plasma BDNF during stressful conditions. Pumpkin is a medicinal plant with an evident antioxidant, anti-inflammatory and potential antidepressant effects. Objective To assess the structural and biochemical effects induced by exposure to chronic unpredictable mild stress (CUMS) on salivary glands of albino rats, and to evaluate the role of pumpkin extract (Pump) in ameliorating this effect. Methodology Four groups (n=10 each) of male albino rats were included in this study: the control, CUMS, Fluoxetine-treated and Pump-treated. The corticosterone, the pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and the oxidant/antioxidant profile were all assessed in the serum. The level of BDNF mRNA was measured in the salivary glands using qRT-PCR. Histopathological changes of the salivary glands were also assessed. Results The depressive-like status was confirmed behaviorally and biochemically. Exposure to CUMS significantly up-regulated (p<0.001) the level of serum corticosterone. CUMS induced degenerative changes in the secretory and ductal elements of the salivary glands evident by increased apoptosis. Both Fluoxetine and Pumpkin significantly up-regulated (p<0.001) BDNF expression in the salivary glands and ameliorated the CUMS-induced histopathological and biochemical alterations in the salivary glands. Pumpkin significantly (p<0.001) increased the serum levels of antioxidant enzymes SOD, GPX and CAT, and reduced the serum levels of the pro-inflammatory cytokines TNF-α, IL-6. Conclusion Pumpkin ameliorates the depressive-like status induced in rats following exposure to chronic stress through exerting a promising anti-inflammatory, antioxidant and anti-depressant-like effects. The pumpkin, subsequently, improved stress-induced structural changes in the salivary glands that might be due to up-regulation of BDNF expression in the glands.


Subject(s)
Animals , Rats , Brain , Salivary Glands , Cucurbita
SELECTION OF CITATIONS
SEARCH DETAIL