Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Med Sci ; 69(1): 176-189, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38561071

ABSTRACT

PURPOSE: Metabolic syndrome (MetS) is a common disorder associated with disturbed neurotransmitter homeostasis. Memantine, an N-methyl-d-aspartate receptor (NMDAR) antagonist, was first used in Alzheimer's disease. Allopregnanolone (Allo), a potent positive allosteric modulator of the Gamma-Amino-Butyric Acid (GABA)-A receptors, decreases in neurodegenerative diseases. The study investigated the impact of Memantine versus Allo administration on the animal model of MetS to clarify whether the mechanism of abnormalities is related more to excitatory or inhibitory neurotransmitter dysfunction. MATERIALS AND METHODS: Fifty-six male rats were allocated into 7 groups: 4 control groups, 1 MetS group, and 2 treated MetS groups. They underwent assessment of cognition-related behavior by open field and forced swimming tests, electroencephalogram (EEG) recording, serum markers confirming the establishment of MetS model and hippocampal Glial Fibrillary Acidic Protein (GFAP) and Brain-Derived Neurotrophic Factor (BDNF). RESULTS: Allo improved anxiety-like behavior and decreased grooming frequency compared to Memantine. Both drugs increased GFAP and BDNF expression, improving synaptic plasticity and cognition-related behaviors. The therapeutic effect of Allo was more beneficial regarding lipid profile and anxiety. We reported progressive slowing of EEG waves in the MetS group with Memantine and Allo treatment with increased relative theta and decreased relative delta rhythms. CONCLUSIONS: Both Allo and Memantine boosted the outcome parameters in the animal model of MetS. Allo markedly improved the anxiety-like behavior in the form of significantly decreased grooming frequency compared to the Memantine-treated groups. Both drugs were associated with increased hippocampal GFAP and BDNF expression, indicating an improvement in synaptic plasticity and so, cognition-related behaviors.


Subject(s)
Memantine , Metabolic Syndrome , Neuronal Plasticity , Receptors, GABA-A , Receptors, N-Methyl-D-Aspartate , Animals , Neuronal Plasticity/drug effects , Male , Rats , Metabolic Syndrome/metabolism , Metabolic Syndrome/drug therapy , Receptors, N-Methyl-D-Aspartate/metabolism , Memantine/pharmacology , Receptors, GABA-A/metabolism , Brain/metabolism , Brain/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Pregnanolone/pharmacology , Pregnanolone/metabolism , Rats, Wistar , Disease Models, Animal
2.
J Oncol Pharm Pract ; 29(6): 1467-1479, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37559370

ABSTRACT

OBJECTIVE: Chemotherapy is the mainstay for triple-negative breast cancer (TNBC) patients. Over the years, the use of chemotherapy for these patients has demonstrated many adversities, including toxicity and resistance, which suggested the need to develop novel alternative therapeutic options, such as poly(ADP-ribose) polymerase inhibitors (PARPi). Herein, we provide an overview on PARPi, mechanisms of action and the role of biomarkers in PARPi sensitivity trials, clinical advances in PARPi therapy for TNBC patients based on the most recent studies and findings of clinical trials, and challenges that prevent PARP inhibitors from achieving high efficacy such as resistance and overlapping toxicities with other chemotherapies. DATA SOURCES: Searching for relevant articles was done using PubMed and Cochrane Library databases by using the keywords including TNBC; chemotherapy; PARPi; BRCA; homologous recombination repair (HRR). Studies had to be published in full-text in English in order to be considered. DATA SUMMARY: Although PARPi have been used in the treatment of local/metastatic breast malignancies that are HER2 negative and has a germline BRCA mutation, several questions are still to be answered in order to maximize the clinical benefit of PARP inhibitors in TNBC treatment, such as questions related to the optimal use in the neoadjuvant and metastatic settings as well as the best combinations with various chemotherapies. CONCLUSIONS: PARPi are emerging treatment options for patients with gBRCA1/2 mutations. Determining patients that are most likely to benefit from PARPi and identifying the optimal treatment combinations with high efficacy and fewer side effects are currently ongoing.

3.
Biomarkers ; 27(1): 22-34, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34882051

ABSTRACT

OBJECTIVE: A new breakthrough development in cancer treatment is chimeric antigen receptor (CAR)-T cell therapy. In this review, we focussed on its efficacy & safety in prostate cancer, obstacles impeding its clinical use, and some strategies trying to overcome them. METHODS: Searching for relevant articles was done using the PubMed and Cochrane Library databases. Studies had to be published in full-text in English in order to be considered. RESULTS: Many factors can limit optimal CAR-T cell outcomes, including the hostile Prostate microenvironment, age, comorbidities, and tumour grade. The adverse effects of the therapy, particularly the cytokine release syndrome, are a major source of worry after treatment administration. Attempts to alter gamma/delta T-cells and NK cells with CAR, on the other hand, have demonstrated higher effectiveness and safety than conventional CAR-T cells. CONCLUSION: To improve the use of immunotherapies, a greater understanding of the prostate cancer microenvironment is required. Concerning toxicity, more research is needed to find the most specific and highly expressed prostate antigens. Furthermore, discovering predictive biomarkers for toxicities, as well as choosing the correct patient for therapy, might decrease immune-related side effects and achieve a greater response.


Subject(s)
Prostatic Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy , Immunotherapy, Adoptive/adverse effects , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , T-Lymphocytes , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...