Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 173: 116381, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452655

ABSTRACT

Curcumin is a natural molecule widely tested in preclinical and clinical studies due to its antioxidant and anti-inflammatory activity. Nevertheless, its high hydrophobicity and low bioavailability limit in vivo applications. To overcome curcumin´s drawbacks, small extracellular vesicles (sEVs) have emerged as potential drug delivery systems due to their non-immunogenicity, nanometric size and amphiphilic composition. This work presents curcumin cargo into milk sEV structure and further in vitro and in vivo evaluation as a therapeutic nanoplatform. The encapsulation of curcumin into sEV was performed by two methodologies under physiological conditions: a passive incorporation and active cargo employing saponin. Loaded sEVs (sEVCurPas and sEVCurAc) were fully characterized by physicochemical techniques, confirming that neither methodology affects the morphology or size of the nanoparticles (sEV: 113.3±5.1 nm, sEVCurPas: 127.0±4.5 nm and sEVCurAc: 98.5±3.6 nm). Through the active approach with saponin (sEVCurAc), a three-fold higher cargo was obtained (433.5 µg/mL) in comparison with the passive approach (129.1 µg/mL). These sEVCurAc were further evaluated in vitro by metabolic activity assay (MTT), confocal microscopy, and flow cytometry, showing a higher cytotoxic effect in the tumoral cells RAW264.7 and HepG2 than in primary hepatocytes, specially at high doses of sEVCurAc (4%, 15% and 30% of viability). In vivo evaluation in an experimental model of liver fibrosis confirmed sEVCurAc therapeutic effects, leading to a significant decrease of serum markers of liver damage (ALT) (557 U/L to 338 U/L with sEVCurAc therapy) and a tendency towards decreased liver fibrogenesis and extracellular matrix (ECM) deposition.


Subject(s)
Curcumin , Extracellular Vesicles , Saponins , Humans , Animals , Curcumin/chemistry , Milk , Liver Cirrhosis
2.
Small ; 18(6): e2105421, 2022 02.
Article in English | MEDLINE | ID: mdl-34854563

ABSTRACT

Exosomes are cell-derived nanovesicles with a proven intercellular signaling role in inflammation processes and immune response. Due to their natural origin and liposome-like structure, these nanometer-scale vesicles have emerged as novel platforms for therapy and diagnosis. In this work, goat milk exosomes are isolated and fully characterized in terms of their physicochemical properties, proteomics, and biochemical profile in healthy mice, and used to detect inflammatory processes by optical imaging. For the in vitro and in vivo experiments, the exosomes are covalently labeled with the commercial fluorophores sulfo-Cyanine 5 and BODIPY-FL to create nanoprobes. In vitro studies using confocal imaging, flow cytometry, and colorimetric assays confirm the internalization of the nanoprobes as well their lack of cytotoxicity in macrophage populations RAW 264.7. Optical imaging in the mouse peritoneal region confirms the in vivo ability of one of the nanoprobes to localize inflammatory processes. In vivo imaging shows exosome uptake in the inflamed peritoneal region, and flow-cytometric analysis of peritonitis exudates confirms the uptake by macrophage and neutrophil populations. These results support the promising use of goat milk exosomes as natural probes in the detection of inflammatory processes.


Subject(s)
Exosomes , Milk/chemistry , Nanoparticles , Animals , Goats , Mice , Optical Imaging
3.
Neural Regen Res ; 16(11): 2125-2131, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33818483

ABSTRACT

The retina, as part of the central nervous system is an ideal model to study the response of neurons to injury and disease and to test new treatments. During the last decade is becoming clear that unilateral lesions in bilateral areas of the central nervous system trigger an inflammatory response in the contralateral uninjured site. This effect has been better studied in the visual system where, as a rule, one retina is used as experimental and the other as control. Contralateral retinas in unilateral models of retinal injury show neuronal degeneration and glial activation. The mechanisms by which this adverse response in the central nervous system occurs are discussed in this review, focusing primarily on the visual system.

SELECTION OF CITATIONS
SEARCH DETAIL
...