Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(5): 109808, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38741710

ABSTRACT

Mitochondrial dynamics is a process that balances fusion and fission events, the latter providing a mechanism for segregating dysfunctional mitochondria. Fission is controlled by the mitochondrial membrane potential (ΔΨm), optic atrophy 1 (OPA1) cleavage, and DRP1 recruitment. It is thought that this process is closely linked to the activity of the mitochondrial respiratory chain (MRC). However, we report here that MRC inhibition does not decrease ΔΨm nor increase fission, as evidenced by hyperconnected mitochondria. Conversely, blocking F0F1-ATP synthase activity induces fragmentation. We show that the F0F1-ATP synthase is sensing the inhibition of MRC activity by immediately promoting its reverse mode of action to hydrolyze matrix ATP and restoring ΔΨm, thus preventing fission. While this reverse mode is expected to be inhibited by the ATPase inhibitor ATPIF1, we show that this sensing is independent of this factor. We have unraveled an unexpected role of F0F1-ATP synthase in controlling the induction of fission by sensing and maintaining ΔΨm.

2.
Brain Commun ; 3(2): fcab063, 2021.
Article in English | MEDLINE | ID: mdl-34056600

ABSTRACT

Biallelic mutations in ACO2, encoding the mitochondrial aconitase 2, have been identified in individuals with neurodegenerative syndromes, including infantile cerebellar retinal degeneration and recessive optic neuropathies (locus OPA9). By screening European cohorts of individuals with genetically unsolved inherited optic neuropathies, we identified 61 cases harbouring variants in ACO2, among whom 50 carried dominant mutations, emphasizing for the first time the important contribution of ACO2 monoallelic pathogenic variants to dominant optic atrophy. Analysis of the ophthalmological and clinical data revealed that recessive cases are affected more severely than dominant cases, while not significantly earlier. In addition, 27% of the recessive cases and 11% of the dominant cases manifested with extraocular features in addition to optic atrophy. In silico analyses of ACO2 variants predicted their deleterious impacts on ACO2 biophysical properties. Skin derived fibroblasts from patients harbouring dominant and recessive ACO2 mutations revealed a reduction of ACO2 abundance and enzymatic activity, and the impairment of the mitochondrial respiration using citrate and pyruvate as substrates, while the addition of other Krebs cycle intermediates restored a normal respiration, suggesting a possible short-cut adaptation of the tricarboxylic citric acid cycle. Analysis of the mitochondrial genome abundance disclosed a significant reduction of the mitochondrial DNA amount in all ACO2 fibroblasts. Overall, our data position ACO2 as the third most frequently mutated gene in autosomal inherited optic neuropathies, after OPA1 and WFS1, and emphasize the crucial involvement of the first steps of the Krebs cycle in the maintenance and survival of retinal ganglion cells.

3.
J Proteome Res ; 18(7): 2779-2790, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31199663

ABSTRACT

OPA1 is a dynamin GTPase implicated in mitochondrial membrane fusion. Despite its involvement in lipid remodeling, the function of OPA1 has never been analyzed by whole-cell lipidomics. We used a nontargeted, reversed-phase lipidomics approach, validated for cell cultures, to investigate OPA1-inactivated mouse embryonic fibroblasts ( Opa1 -/- MEFs). This led to the identification of a wide range of 14 different lipid subclasses comprising 212 accurately detected lipids. Multivariate and univariate statistical analyses were then carried out to assess the differences between the Opa1 -/- and Opa1 +/+ genotypes. Of the 212 lipids identified, 69 were found to discriminate between Opa1 -/- MEFs and Opa1 +/+ MEFs. Among these lipids, 34 were triglycerides, all of which were at higher levels in Opa1 -/- MEFs with fold changes ranging from 3.60 to 17.93. Cell imaging with labeled fatty acids revealed a sharp alteration of the fatty acid flux with a reduced mitochondrial uptake. The other 35 discriminating lipids included phosphatidylcholines, lysophosphatidylcholines, phosphatidylethanolamine, and sphingomyelins, mainly involved in membrane remodeling, and ceramides, gangliosides, and phosphatidylinositols, mainly involved in apoptotic cell signaling. Our results show that the inactivation of OPA1 severely affects the mitochondrial uptake of fatty acids and lipids through membrane remodeling and apoptotic cell signaling.


Subject(s)
Fatty Acids/metabolism , Fibroblasts/enzymology , GTP Phosphohydrolases/metabolism , Lipidomics/methods , Triglycerides/metabolism , Animals , Apoptosis , Cell Membrane/metabolism , Cells, Cultured , GTP Phosphohydrolases/genetics , Mice , Mice, Knockout , Mitochondria/metabolism
4.
Sci Rep ; 8(1): 11528, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30068998

ABSTRACT

OPA1 (Optic Atrophy 1) is a multi-isoform dynamin GTPase involved in the regulation of mitochondrial fusion and organization of the cristae structure of the mitochondrial inner membrane. Pathogenic OPA1 variants lead to a large spectrum of disorders associated with visual impairment due to optic nerve neuropathy. The aim of this study was to investigate the metabolomic consequences of complete OPA1 disruption in Opa1-/- mouse embryonic fibroblasts (MEFs) compared to their Opa1+/+ counterparts. Our non-targeted metabolomics approach revealed significant modifications of the concentration of several mitochondrial substrates, i.e. a decrease of aspartate, glutamate and α-ketoglutaric acid, and an increase of asparagine, glutamine and adenosine-5'-monophosphate, all related to aspartate metabolism. The signature further highlighted the altered metabolism of nucleotides and NAD together with deficient mitochondrial bioenergetics, reflected by the decrease of creatine/creatine phosphate and pantothenic acid, and the increase in pyruvate and glutathione. Interestingly, we recently reported significant variations of five of these molecules, including aspartate and glutamate, in the plasma of individuals carrying pathogenic OPA1 variants. Our findings show that the disruption of OPA1 leads to a remodelling of bioenergetic pathways with the central role being played by aspartate and related metabolites.


Subject(s)
Energy Metabolism , Fibroblasts/chemistry , Fibroblasts/metabolism , GTP Phosphohydrolases/deficiency , Metabolome , Animals , Mice , Mice, Knockout , Mitochondria/metabolism
6.
Brain ; 140(10): 2586-2596, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28969390

ABSTRACT

Dominant optic atrophy is a blinding disease due to the degeneration of the retinal ganglion cells, the axons of which form the optic nerves. In most cases, the disease is caused by mutations in OPA1, a gene encoding a mitochondrial large GTPase involved in cristae structure and mitochondrial network fusion. Using exome sequencing, we identified dominant mutations in DNM1L on chromosome 12p11.21 in three large families with isolated optic atrophy, including the two families that defined the OPA5 locus on chromosome 19q12.1-13.1, the existence of which is denied by the present study. Analyses of patient fibroblasts revealed physiological abundance and homo-polymerization of DNM1L, forming aggregates in the cytoplasm and on highly tubulated mitochondrial network, whereas neither structural difference of the peroxisome network, nor alteration of the respiratory machinery was noticed. Fluorescence microscopy of wild-type mouse retina disclosed a strong DNM1L expression in the ganglion cell layer and axons, and comparison between 3-month-old wild-type and Dnm1l+/- mice revealed increased mitochondrial length in retinal ganglion cell soma and axon, but no degeneration. Thus, our results disclose that in addition to OPA1, OPA3, MFN2, AFG3L2 and SPG7, dominant mutations in DNM1L jeopardize the integrity of the optic nerve, suggesting that alterations of the opposing forces governing mitochondrial fusion and fission, similarly affect retinal ganglion cell survival.


Subject(s)
GTP Phosphohydrolases/genetics , Microtubule-Associated Proteins/genetics , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/genetics , Mutation/genetics , Optic Atrophy/genetics , Adolescent , Adult , Animals , Cells, Cultured , Child , Dynamins , Family Health , Female , Fibroblasts/pathology , Fibroblasts/ultrastructure , Humans , Male , Mice , Microscopy, Electron, Transmission , Middle Aged , Oxygen Consumption/genetics , Peroxisomes/pathology , Retina/pathology , Retina/ultrastructure
7.
J Cell Mol Med ; 21(10): 2284-2297, 2017 10.
Article in English | MEDLINE | ID: mdl-28378518

ABSTRACT

Optic Atrophy 1 (OPA1) gene mutations cause diseases ranging from isolated dominant optic atrophy (DOA) to various multisystemic disorders. OPA1, a large GTPase belonging to the dynamin family, is involved in mitochondrial network dynamics. The majority of OPA1 mutations encodes truncated forms of the protein and causes DOA through haploinsufficiency, whereas missense OPA1 mutations are predicted to cause disease through deleterious dominant-negative mechanisms. We used 3D imaging and biochemical analysis to explore autophagy and mitophagy in fibroblasts from seven patients harbouring OPA1 mutations. We report new genotype-phenotype correlations between various types of OPA1 mutation and mitophagy. Fibroblasts bearing dominant-negative OPA1 mutations showed increased autophagy and mitophagy in response to uncoupled oxidative phosphorylation. In contrast, OPA1 haploinsufficiency was correlated with a substantial reduction in mitochondrial turnover and autophagy, unless subjected to experimental mitochondrial injury. Our results indicate distinct alterations of mitochondrial physiology and turnover in cells with OPA1 mutations, suggesting that the level and profile of OPA1 may regulate the rate of mitophagy.


Subject(s)
Autophagy/genetics , GTP Phosphohydrolases/genetics , Mutation , Optic Atrophy, Autosomal Dominant/genetics , Adolescent , Adult , Cells, Cultured , Child, Preschool , Female , Fibroblasts/metabolism , GTP Phosphohydrolases/metabolism , Genetic Association Studies , Humans , Male , Middle Aged , Mitophagy/genetics
8.
Int J Biochem Cell Biol ; 44(6): 980-8, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22433900

ABSTRACT

Mitochondria form dynamic tubular networks through processes of fission and fusion. Defect in mitochondrial dynamics lead to various pathologies, including several common and some rare neurodegenerative disorders. OPA1 and MFN2 are two key players in mitochondrial fusion associated with Autosomal Dominant Optic Atrophy and Charcot Marie Tooth neuropathy type 2A respectively. We used micropatterned coverslips to standardize the visualization of mitochondrial distribution in skin fibroblasts. In fibroblasts from affected patients, mutations in the OPA1 and MFN2 genes were found to affect the volume and cellular distribution of mitochondria. In G1/S cell cycle phase, mitochondria emerging from the microtubule organizing centre may be crucial to mitochondrial biogenesis since it appeared to be protected against mitochondrial fragmentation induced by OPA1 mutations. The standardized quantitative analysis of the mitochondrial network and the description of mitochondrial subcellular distribution should lead to better diagnostic criteria for mitochondrial diseases and yield new insights into mitochondrial dysfunction in disease and aging.


Subject(s)
GTP Phosphohydrolases/physiology , Mitochondria/physiology , Base Sequence , Female , GTP Phosphohydrolases/genetics , Humans , Male , Mitochondria/metabolism , Mutation , RNA, Small Interfering
SELECTION OF CITATIONS
SEARCH DETAIL
...