Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Int J Toxicol ; 40(5): 466-474, 2021 10.
Article in English | MEDLINE | ID: mdl-34284608

ABSTRACT

The aim of this report was to evaluate the morphological and biochemical changes in the liver by the inhalation of vanadium and consumption of sweetened beverages in a subchronic murine model. Forty CD-1 male mice were randomly divided into four groups: control, vanadium (V), sucrose 30% (S), and vanadium-sucrose (V + S). V was inhaled (1.4 mg/m3) for 1h, twice/week; 30% sucrose solution was given orally ad libitum. Blood samples were obtained for AST, ALT, and LDH determination. Liver samples were processed for histological and oxidative stress immunohistochemical evaluation with 4-hydroxynonenal at weeks 4 and 8 of exposure. Regarding liver function tests, a statistically significant increase (P < 0.05) was observed in groups V, S, and V + S at weeks 4 and 8 compared to the control group. A greater number of hepatocytes with meganuclei and binuclei were observed in V and V + S at week 8 compared to the other groups. Steatosis and regenerative changes were more extensive in the eighth week V + S group. 4-Hydroxynonenal immunoreactivity increased in the V + S group at both exposure times compared to the other groups; however, the increment was more evident in the V + S group at week 4 compared to the V + S group at week 8. An increase in De Ritis ratio (>1) was noticed in experimental groups at weeks 4 and 8. Findings demonstrate that in the liver, V, S, and V + S induced oxidative stress and regenerative changes that increased with the length of exposure. Results support possible potentiation of liver damage in areas with high air pollution and high-sweetened beverage consumption.


Subject(s)
Liver/drug effects , Sugar-Sweetened Beverages/toxicity , Vanadium Compounds/administration & dosage , Administration, Inhalation , Alanine Transaminase/blood , Aldehydes/metabolism , Animals , Aspartate Aminotransferases/blood , Fatty Liver/etiology , Fatty Liver/metabolism , Fatty Liver/pathology , L-Lactate Dehydrogenase/blood , Liver/metabolism , Liver/pathology , Male , Mice , Oxidative Stress , Vanadium Compounds/toxicity
2.
Toxicol Ind Health ; 37(3): 164-172, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33506746

ABSTRACT

Air pollution is a worldwide public health issue and it is associated with millions of premature deaths due to cancer, thrombosis, and pulmonary and cardiovascular diseases. Thrombosis is the excessive clotting that blocks a blood vessel, and its etiology is multifactorial. In recent years, growing evidence has linked air pollution, especially particulate matter (PM) and metals, to the development of thrombosis. PM and metals induce lung and systemic inflammation and oxidative stress that are frequent mechanisms in thrombosis. Platelets are important effectors of physiological hemostasis and pathological thrombosis. They are responsible for the formation of the initial plug and are important in the cellular model of coagulation. Therefore, any changes in their morphology or function or an increase in activation could be extremely relevant in thrombosis. Megakaryocytes (MKs) in the bone marrow and in the lungs are the precursor cells of platelets, and the latter is the first organ injured by air pollution. There is substantial evidence of the effect that PM and metals have on platelets, but there is almost no research about the effect of PM and metals on MKs. It is very likely that the alterations produced by air pollution originate in these cells. In this article, we review the biology of MKs and platelets and their role in particulate air pollution-related thrombosis to emphasize the need for further research in this field.


Subject(s)
Air Pollutants/adverse effects , Blood Platelets/drug effects , Megakaryocytes/drug effects , Particulate Matter/adverse effects , Thrombosis/etiology , Blood Platelets/metabolism , Humans , Thrombosis/chemically induced
4.
Rev. Fac. Med. UNAM ; 62(1): 6-18, ene.-feb. 2019. tab, graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1013219

ABSTRACT

Resumen El megacariocito es la célula más grande de la médula ósea, por lo tanto es relativamente fácil reconocer su presencia al observar un aspirado o una biopsia de este tejido. Difiere de otras células por su tamaño, por ser poliploide y crecer por endomitosis. No hay otra célula humana que crezca así. Además, tiene funciones biológicas muy importantes. La más conocida es el dar origen a las plaquetas, que son indispensables para la hemostasia y la reparación de los vasos sanguíneos dañados, así como para la cicatrización de los tejidos que rodean a las heridas. Sin embargo, en los últimos años, a los megacariocitos también se les han atribuido algunas otras funciones que discutiremos en esta revisión.


Abstract The Megakaryocyte is the biggest cell in the bone marrow; therefore, it is easy to recognize in a bone marrow aspirate. In humans, this cell differs from others because of its size, its polyploidy and because it grows by endomitosis. It is the only human cell that grows this way. In addition, the megakaryocyte has very important biological functions. Its best-known function is being in charge of the production of platelets, which are essential for hemostasis, the repair of damaged blood vessels, and healing the tissues surrounding wounds. However, in recent years, other functions have been attributed to the megakaryocyte, which will be discussed in this review.

5.
Rev. Fac. Med. UNAM ; 61(2): 7-15, mar.-abr. 2018. tab, graf
Article in Spanish | LILACS | ID: biblio-957156

ABSTRACT

Resumen A nivel mundial, la infertilidad en las parejas ha ido en aumento. Hay muchas causas implicadas en este problema, sin embargo, un factor que influye y que cada vez cobra mayor presencia e importancia es la contaminación atmosférica. Aunque tanto las mujeres como los hombres pueden presentar alteraciones que les impidan ser fértiles, en esta revisión se describen 2 factores que han demostrado afectar la salud reproductiva femenina: el estilo de vida y la contaminación ambiental. Entre los factores de estilo de vida que afectan a la salud reproductiva en las mujeres se incluyen el tabaquismo, la obesidad, el estrés y el aplazamiento de la maternidad. Por el lado de la contaminación atmosférica, se ha demostrado que los plaguicidas organoclorinados, los derivados de combustibles fósiles, los hidrocarburos aromáticos policíclicos, los óxidos de azufre y de nitrógeno, los metales y las partículas suspendidas, generan efectos adversos sobre la capacidad de embarazarse. La evidencia epidemiológica y experimental es cada vez mayor, y demuestra que hay una relación consistente entre la presencia de estos factores y los problemas que tienen cada vez más parejas en el mundo para concebir un hijo. Aunados al estilo de vida, en muchos países son frecuentes los problemas de contaminación que inciden en la infertilidad de la población. Esto hace fundamental crear conciencia. Aunque es cierto que las ciudades o zonas industrializadas es donde se observan estos problemas con mayor frecuencia, no son privativos ni se restringen a esos lugares, nos afectan a todos y, al menos en lo que concierne a la contaminación, todos podemos y debemos participar en la mejora de las condiciones de vida que van de la mano con nuestra salud reproductiva.


Abstract Infertility in couples has been increasing worldwide. There are a lot of causes involved in this issue, however one factor that is gaining a greater presence and importance is air pollution. Although both women and men can present alterations that prevent them from being fertile, this review describes two factors that are known to affect female reproductive health: lifestyle and environmental pollution. Lifestyle factors that affect reproductive health in women include smoking, obesity, stress, and deferment of motherhood. Regarding air pollution, it is known that organo-chlorinated pesticides, fossil fuel derivatives, polycyclic aromatic hydrocarbons, sulfur and nitrogen oxides, metals and suspended particles all produce adverse effects in the possibility of getting pregnant. The increasing body of epidemiological and experimental evidence shows a consistent relationship between the presence of these factors and the issues that a growing number couples around the world present to conceive a child. Along with the lifestyle, pollution is a common cause of infertility in the population in many countries of the world. Hence, it is essential to raise awareness in the population about these consequences. Although ,these problems are more frequently observed in cities or industrialized areas, they are not exclusive or restricted to these places, they affect us all, and at least as far as pollution is concerned, we all can and should participate in the improvement of our living conditions that go along with our reproductive health.

6.
Int J Toxicol ; 37(1): 45-52, 2018.
Article in English | MEDLINE | ID: mdl-29254395

ABSTRACT

Kidney diseases have notably increased in the last few years. This is partially explained by the increase in metabolic syndrome, diabetes, and systemic blood hypertension. However, there is a segment of the population that has neither of the previous risk factors, yet suffers kidney damage. Exposure to atmospheric pollutants has been suggested as a possible risk factor. Air-suspended particles carry on their surface a variety of fuel combustion-related residues such as metals, and vanadium is one of these. Vanadium might produce oxidative stress resulting in the damage of some organs such as the kidney. Additionally, in countries like Mexico, the ingestion of sweetened beverages is a major issue; whether these beverages alone are responsible for direct kidney damage or whether their ingestion promotes the progression of an existing renal damage generates controversy. In this study, we report the combined effect of vanadium inhalation and sweetened beverages ingestion in a mouse model. Forty CD-1 male mice were distributed in 4 groups: control, vanadium inhalation, 30% sucrose in drinking water, and vanadium inhalation plus sucrose 30% in drinking water. Our results support that vanadium inhalation and the ingestion of 30% sucrose induce functional and histological kidney damage and an increase in oxidative stress biomarkers, which were higher in the combined effect of vanadium plus 30% sucrose. The results also support that the ingestion of 30% sucrose alone without hyperglycemia also produces kidney damage.


Subject(s)
Beverages/adverse effects , Kidney Diseases/chemically induced , Oxidative Stress/drug effects , Sucrose/adverse effects , Vanadium/toxicity , Administration, Oral , Animals , Beverages/analysis , Blood Glucose , Drug Interactions , Kidney/drug effects , Kidney/pathology , Male , Mice , Random Allocation , Sucrose/administration & dosage , Sucrose/chemistry , Sucrose/pharmacokinetics , Sweetening Agents/administration & dosage , Sweetening Agents/adverse effects , Sweetening Agents/analysis , Sweetening Agents/pharmacokinetics , Urinalysis , Vanadium/pharmacokinetics
7.
Environ Toxicol Pharmacol ; 46: 337-343, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27552445

ABSTRACT

There are evidences of environmental pollution and health effects. Metals are pollutants implicated in systemic toxicity. One of the least studied effects, but which is currently becoming more important, is the effect of metals on glycemic control. Metals have been implicated as causes of chronic inflammation and oxidative stress and are associated to obesity, hyperglycemia and even diabetes. Arsenic, iron, mercury, lead, cadmium and nickel have been studied as a risk factor for hyperglycemia and diabetes. There is another group of metals that causes hypoglycemia such as vanadium, chromium, zinc and magnesium by different mechanisms. Zinc, magnesium and chromium deficiency is associated with increased risk of diabetes. This review summarizes some metals involved in glycemic control and pretends to alert health professionals about considering environmental metals as an important factor that could explain the poor glycemic control in patients. Further studies are needed to understand this poorly assessed problem.


Subject(s)
Environmental Pollutants/toxicity , Hyperglycemia/chemically induced , Hypoglycemia/chemically induced , Metals/toxicity , Animals , Blood Glucose/metabolism , Humans , Hyperglycemia/metabolism , Hypoglycemia/metabolism , Insulin/blood , Insulin Resistance
SELECTION OF CITATIONS
SEARCH DETAIL
...