Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Dis Health ; 28(1): 19-26, 2023 02.
Article in English | MEDLINE | ID: mdl-35995707

ABSTRACT

BACKGROUNDS: In 2022, smartphone use continues to expand with the number of smartphone subscriptions surpassing 6 billion and forecasted to grow to 7.5 billion by 2026. The necessity of these 'high touch' devices as essential tools in professional healthcare settings carries great risks of cross-contamination between mobile phones and hands. Current research emphasises mobile phones as fomites enhancing the risk of nosocomial disease dissemination as phone sanitisation is often overlooked. To assess and report via a large-scale E-survey the handling practices and the use of phones by healthcare workers. METHODS: A total of 377 healthcare workers (HCWs) participated in this study to fill in an E-survey online consisting of 14 questions (including categorical, ordinal, and numerical data). Analysis of categorical data used non-parametric techniques such as Pearson's chi-squared test. RESULTS: During an 8-h shift, 92.8% (n/N = 350/377) use their phone at work with 84.6% (n/N = 319/377) considering mobile phones as an essential tool for their job. Almost all HCWs who participated in this survey believe their mobile phones could potentially harbour microorganisms (97.1%; n/N = 366/377). Fifty-seven respondents (15.1%) indicated that they use their phones while wearing gloves and 10.3% (n/N = 39/377) have never cleaned their phones. The majority of respondents (89.3%; n/N = 337/377) agreed that contaminated mobile phones could contribute to dissemination of SARS-CoV-2. CONCLUSION: Mobile phone use is now almost universal and indispensable in healthcare. Medical staff believe mobile phones can act as fomites with a potential risk for dissemination of microbes including SARS-COV-2. There is an urgent call for the incorporation of mobile phone sanitisation in infection prevention protocol. Studies on the use of ultraviolet-C based phone sanitation devices in health care settings are needed.


Subject(s)
COVID-19 , Cell Phone , Humans , Fomites , Cross-Sectional Studies , United Arab Emirates , SARS-CoV-2 , Health Personnel
2.
Electrophoresis ; 43(18-19): 1911-1919, 2022 10.
Article in English | MEDLINE | ID: mdl-35899438

ABSTRACT

This article details the development of a single multiplex system amplifying 26 rapidly mutating Y-STR markers. A sequenced allelic ladder, constructed for calling alleles of all loci, is introduced. The multiplex system shows the ability to address the limitations of Y-STRs commercial kits in differentiating closely related males. The multiplex performed well in the prevalidation tests and showed great potential to be used in forensic casework.


Subject(s)
Chromosomes, Human, Y , Microsatellite Repeats , Alleles , Chromosomes, Human, Y/genetics , DNA Fingerprinting , Forensic Medicine , Haplotypes , Humans , Male , Microsatellite Repeats/genetics
3.
Saudi J Biol Sci ; 29(5): 3177-3183, 2022 May.
Article in English | MEDLINE | ID: mdl-35844379

ABSTRACT

Because they are totally transferred to the future generations until mutations occur, Y chromosome genetic markers are commonly utilised in forensics for the classification of male lineages for criminal justice purposes. The mutation rate of Rapidly Mutating Y-STRs (RM Y-STRs) markers is high. That is not seen in other Y-STRs markers, and they appear to be effective in distinguishing paternally related men. This study aimed to estimate the population and mutational parameters of 13 RM Y-STRs in 13 unrelated males born in Gilgit, Pakistan. Repeat there was no population substructure and strong discriminating capacity in the counts. In this population, there were higher mutation rates with the unusual structure of repeats. More research is needed to better characterize these loci in diverse Pakistani groups.

4.
Sci Rep ; 11(1): 14102, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34239006

ABSTRACT

There is increasing attention focussed on the risks associated with mobile phones possibly serving as 'Trojan Horse' fomites for microbial transmission in healthcare settings. However, little is reported on the presence of microbes on community derived mobile phones which in 2021, numbered in the billions in circulation with majority being used on a daily basis. Identify viable microbial organisms swabbed from smartphones on a university campus. Entire surfaces of 5 mobile phones were swabbed and examined for their microbial content using pre-agar-based growths followed by downstream DNA metagenomic next-generation sequencing analysis. All phones were contaminated with viable microbes. 173 bacteria, 8 fungi, 8 protists, 53 bacteriophages, 317 virulence factor genes and 41 distinct antibiotic resistant genes were identified. While this research represents a pilot study, the snapshot metagenomic analysis of samples collected from the surface of mobile phones has revealed the presence of a large population of viable microbes and an array of antimicrobial resistant factors. With billions of phones in circulation, these devices might be responsible for the rise of community acquired infections. These pilot results highlight the importance of public health authorities considering mobile phones as 'Trojan Horse' devices for microbial transmission and ensure appropriate decontamination campaigns are implemented.


Subject(s)
Bacteria/genetics , Cell Phone , Fungi/genetics , Metagenomics , Bacteriophages/genetics , Biodiversity , Metagenome , Virulence Factors/metabolism
5.
Sci Total Environ ; 760: 143350, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33143926

ABSTRACT

Severe Acute Respiratory Syndrome - Coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China and spread to more than 114 countries resulting in a pandemic, which was declared by the WHO in March 2020. Tracking the spread of the virus raised a main concern in every country. Many researches proved the presence of SARS-CoV-2 in stool samples of patients, where the genes of this virus gave a positive signal several days prior to the occurrence of symptoms. The fact of viral shedding in stools provides an advantage in utilizing wastewater systems as a tool to monitor the viral prevalence. We tested more than 2900 municipal wastewater samples coming from 49 distinctive area in Dubai, where 28.6% showed positive results. We also looked into the wastewater samples from 198 commercial aircrafts arriving at Dubai Airport, giving a positive result percentage of 13.6%. The presence of SARS-CoV-2 genes was confirmed using TaqPath™ Covid-19 RT-PCR kit, which targets ORF1ab, N gene and S gene. This project shows the significance of utilizing wastewater-based epidemiology (WBE) in monitoring the prevalence of various infectious diseases such as SARS-CoV-2, which can assist the decision makers to determine the level of precautionary measures according to the areas of the outbreak. With this in mind, pricewise, WBE is considered cost-effective when comparing to clinical nasal swabs.


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , Aircraft , China/epidemiology , Humans , Prevalence , SARS-CoV-2 , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...