Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38462398

ABSTRACT

OBJECTIVE: To validate the unsupervised cluster model (USCM) developed during the first pandemic wave in a cohort of critically ill patients from the second and third pandemic waves. DESIGN: Observational, retrospective, multicentre study. SETTING: Intensive Care Unit (ICU). PATIENTS: Adult patients admitted with COVID-19 and respiratory failure during the second and third pandemic waves. INTERVENTIONS: None. MAIN VARIABLES OF INTEREST: Collected data included demographic and clinical characteristics, comorbidities, laboratory tests and ICU outcomes. To validate our original USCM, we assigned a phenotype to each patient of the validation cohort. The performance of the classification was determined by Silhouette coefficient (SC) and general linear modelling. In a post-hoc analysis we developed and validated a USCM specific to the validation set. The model's performance was measured using accuracy test and area under curve (AUC) ROC. RESULTS: A total of 2330 patients (mean age 63 [53-82] years, 1643 (70.5%) male, median APACHE II score (12 [9-16]) and SOFA score (4 [3-6]) were included. The ICU mortality was 27.2%. The USCM classified patients into 3 clinical phenotypes: A (n = 1206 patients, 51.8%); B (n = 618 patients, 26.5%), and C (n = 506 patients, 21.7%). The characteristics of patients within each phenotype were significantly different from the original population. The SC was -0.007 and the inclusion of phenotype classification in a regression model did not improve the model performance (0.79 and 0.78 ROC for original and validation model). The post-hoc model performed better than the validation model (SC -0.08). CONCLUSION: Models developed using machine learning techniques during the first pandemic wave cannot be applied with adequate performance to patients admitted in subsequent waves without prior validation.

2.
Med Intensiva (Engl Ed) ; 48(3): 142-154, 2024 03.
Article in English | MEDLINE | ID: mdl-37923608

ABSTRACT

OBJECTIVE: To evaluate the impact of obesity on ICU mortality. DESIGN: Observational, retrospective, multicentre study. SETTING: Intensive Care Unit (ICU). PATIENTS: Adults patients admitted with COVID-19 and respiratory failure. INTERVENTIONS: None. PRIMARY VARIABLES OF INTEREST: Collected data included demographic and clinical characteristics, comorbidities, laboratory tests and ICU outcomes. Body mass index (BMI) impact on ICU mortality was studied as (1) a continuous variable, (2) a categorical variable obesity/non-obesity, and (3) as categories defined a priori: underweight, normal, overweight, obesity and Class III obesity. The impact of obesity on mortality was assessed by multiple logistic regression and Smooth Restricted cubic (SRC) splines for Cox hazard regression. RESULTS: 5,206 patients were included, 20 patients (0.4%) as underweight, 887(17.0%) as normal, 2390(46%) as overweight, 1672(32.1) as obese and 237(4.5%) as class III obesity. The obesity group patients (n = 1909) were younger (61 vs. 65 years, p < 0.001) and with lower severity scores APACHE II (13 [9-17] vs. 13[10-17, p < 0.01) than non-obese. Overall ICU mortality was 28.5% and not different for obese (28.9%) or non-obese (28.3%, p = 0.65). Only Class III obesity (OR = 2.19, 95%CI 1.44-3.34) was associated with ICU mortality in the multivariate and SRC analysis. CONCLUSIONS: COVID-19 patients with a BMI > 40 are at high risk of poor outcomes in the ICU. An effective vaccination schedule and prolonged social distancing should be recommended.


Subject(s)
COVID-19 , Overweight , Adult , Humans , Overweight/complications , Overweight/epidemiology , Critical Illness , Retrospective Studies , Thinness/complications , COVID-19/complications , Obesity/complications , Obesity/epidemiology
3.
Sci Rep ; 13(1): 6553, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085552

ABSTRACT

Around one-third of patients diagnosed with COVID-19 develop a severe illness that requires admission to the Intensive Care Unit (ICU). In clinical practice, clinicians have learned that patients admitted to the ICU due to severe COVID-19 frequently develop ventilator-associated lower respiratory tract infections (VA-LRTI). This study aims to describe the clinical characteristics, the factors associated with VA-LRTI, and its impact on clinical outcomes in patients with severe COVID-19. This was a multicentre, observational cohort study conducted in ten countries in Latin America and Europe. We included patients with confirmed rtPCR for SARS-CoV-2 requiring ICU admission and endotracheal intubation. Only patients with a microbiological and clinical diagnosis of VA-LRTI were included. Multivariate Logistic regression analyses and Random Forest were conducted to determine the risk factors for VA-LRTI and its clinical impact in patients with severe COVID-19. In our study cohort of 3287 patients, VA-LRTI was diagnosed in 28.8% [948/3287]. The cumulative incidence of ventilator-associated pneumonia (VAP) was 18.6% [610/3287], followed by ventilator-associated tracheobronchitis (VAT) 10.3% [338/3287]. A total of 1252 bacteria species were isolated. The most frequently isolated pathogens were Pseudomonas aeruginosa (21.2% [266/1252]), followed by Klebsiella pneumoniae (19.1% [239/1252]) and Staphylococcus aureus (15.5% [194/1,252]). The factors independently associated with the development of VA-LRTI were prolonged stay under invasive mechanical ventilation, AKI during ICU stay, and the number of comorbidities. Regarding the clinical impact of VA-LRTI, patients with VAP had an increased risk of hospital mortality (OR [95% CI] of 1.81 [1.40-2.34]), while VAT was not associated with increased hospital mortality (OR [95% CI] of 1.34 [0.98-1.83]). VA-LRTI, often with difficult-to-treat bacteria, is frequent in patients admitted to the ICU due to severe COVID-19 and is associated with worse clinical outcomes, including higher mortality. Identifying risk factors for VA-LRTI might allow the early patient diagnosis to improve clinical outcomes.Trial registration: This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable.


Subject(s)
Bronchitis , COVID-19 , Pneumonia, Ventilator-Associated , Respiratory Tract Infections , Humans , Prospective Studies , COVID-19/complications , SARS-CoV-2 , Respiration, Artificial/adverse effects , Respiratory Tract Infections/complications , Pneumonia, Ventilator-Associated/drug therapy , Bronchitis/drug therapy , Ventilators, Mechanical/adverse effects , Risk Factors , Intensive Care Units
4.
J Crit Care ; 69: 154014, 2022 06.
Article in English | MEDLINE | ID: mdl-35217370

ABSTRACT

PURPOSE: Dexamethasone is the only drug that has consistently reduced mortality in patients with COVID-19, especially in patients needing oxygen or invasive mechanical ventilation. However, there is a growing concern about the relation of dexamethasone with the unprecedented rates of ICU-acquired respiratory tract infections (ICU-RTI) observed in patients with severe COVID-19. METHODS: This was a multicenter, prospective cohort study; conducted in ten countries in Latin America and Europe. We included patients older than 18 with confirmed SARS-CoV-2 requiring ICU admission. A multivariate logistic regression and propensity score matching (PSM) analysis was conducted to determine the relation between dexamethasone treatment and ICU-RTI. RESULTS: A total of 3777 patients were included. 2065 (54.7%) were treated with dexamethasone within the first 24 h of admission. After performing the PSM, patients treated with dexamethasone showed significantly higher proportions of VAP (282/1652 [17.1%] Vs. 218/1652 [13.2%], p = 0.014). Also, dexamethasone treatment was identified as an adjusted risk factor of ICU-RTI in the multivariate logistic regression model (OR 1.64; 95%CI: 1.37-1.97; p < 0.001). CONCLUSION: Patients treated with dexamethasone for severe COVID-19 had a higher risk of developing ICU-acquired respiratory tract infections after adjusting for days of invasive mechanical ventilation and ICU length of stay, suggesting a cautious use of this treatment.


Subject(s)
COVID-19 Drug Treatment , Dexamethasone/adverse effects , Humans , Intensive Care Units , Prospective Studies , Risk Factors , SARS-CoV-2
5.
Ann Intensive Care ; 11(1): 159, 2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34825976

ABSTRACT

BACKGROUND: Some unanswered questions persist regarding the effectiveness of corticosteroids for severe coronavirus disease 2019 (COVID-19) patients. We aimed to assess the clinical effect of corticosteroids on intensive care unit (ICU) mortality among mechanically ventilated COVID-19-associated acute respiratory distress syndrome (ARDS) patients. METHODS: This was a retrospective study of prospectively collected data conducted in 70 ICUs (68 Spanish, one Andorran, one Irish), including mechanically ventilated COVID-19-associated ARDS patients admitted between February 6 and September 20, 2020. Individuals who received corticosteroids for refractory shock were excluded. Patients exposed to corticosteroids at admission were matched with patients without corticosteroids through propensity score matching. Primary outcome was all-cause ICU mortality. Secondary outcomes were to compare in-hospital mortality, ventilator-free days at 28 days, respiratory superinfection and length of stay between patients with corticosteroids and those without corticosteroids. We performed survival analysis accounting for competing risks and subgroup sensitivity analysis. RESULTS: We included 1835 mechanically ventilated COVID-19-associated ARDS, of whom 1117 (60.9%) received corticosteroids. After propensity score matching, ICU mortality did not differ between patients treated with corticosteroids and untreated patients (33.8% vs. 30.9%; p = 0.28). In survival analysis, corticosteroid treatment at ICU admission was associated with short-term survival benefit (HR 0.53; 95% CI 0.39-0.72), although beyond the 17th day of admission, this effect switched and there was an increased ICU mortality (long-term HR 1.68; 95% CI 1.16-2.45). The sensitivity analysis reinforced the results. Subgroups of age < 60 years, severe ARDS and corticosteroids plus tocilizumab could have greatest benefit from corticosteroids as short-term decreased ICU mortality without long-term negative effects were observed. Larger length of stay was observed with corticosteroids among non-survivors both in the ICU and in hospital. There were no significant differences for the remaining secondary outcomes. CONCLUSIONS: Our results suggest that corticosteroid treatment for mechanically ventilated COVID-19-associated ARDS had a biphasic time-dependent effect on ICU mortality. Specific subgroups showed clear effect on improving survival with corticosteroid use. Therefore, further research is required to identify treatment-responsive subgroups among the mechanically ventilated COVID-19-associated ARDS patients.

6.
Crit Care ; 25(1): 63, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33588914

ABSTRACT

BACKGROUND: The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes. METHODS: Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 ICUs in Spain. The objective was to utilize an unsupervised clustering analysis to derive clinical COVID-19 phenotypes and to analyze patient's factors associated with mortality risk. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves. RESULTS: The database included a total of 2022 patients (mean age 64 [IQR 5-71] years, 1423 (70.4%) male, median APACHE II score (13 [IQR 10-17]) and SOFA score (5 [IQR 3-7]) points. The ICU mortality rate was 32.6%. Of the 3 derived phenotypes, the A (mild) phenotype (537; 26.7%) included older age (< 65 years), fewer abnormal laboratory values and less development of complications, B (moderate) phenotype (623, 30.8%) had similar characteristics of A phenotype but were more likely to present shock. The C (severe) phenotype was the most common (857; 42.5%) and was characterized by the interplay of older age (> 65 years), high severity of illness and a higher likelihood of development shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications. CONCLUSION: The presented machine learning model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a "one-size-fits-all" model in practice.


Subject(s)
COVID-19/mortality , COVID-19/therapy , Aged , Cluster Analysis , Critical Illness , Female , Humans , Male , Middle Aged , Phenotype , Risk Assessment , Risk Factors , Spain/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...