Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 6: 32171, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27571937

ABSTRACT

The effect of silver on the phase transition and microstructure of titanium oxide films grown by pulsed cathodic arc had been investigated by XRD, SEM and Raman spectroscopy. Following successive thermal annealing up to 1000 °C, microstructural analysis of annealed Ag-TiO2 films reveals that the incorporation of Ag nanoparticles strongly affects the transition temperature from the initial metastable amorphous phase to anatase and stable rutile phase. An increase of silver content into TiO2 matrix inhibits the amorphous to anatase phase transition, raising its temperature boundary and, simultaneously reduces the transition temperature to promote rutile structure at lower value of 600 °C. The results are interpreted in terms of the steric effects produced by agglomeration of Ag atoms into larger clusters following annealing which hinders diffusion of Ti and O ions for anatase formation and constrains the volume available for the anatase lattice, thus disrupting its structure to form rutile phase. The effect of silver on the optical and wetting properties of TiO2 was evaluated to demonstrate its improved photocatalytic performance.

2.
Small ; 1(3): 300-9, 2005 Mar.
Article in English | MEDLINE | ID: mdl-17193446

ABSTRACT

The design of reproducible and more efficient nanofabrication routes has become a very active research field in recent years. In particular, the development of new methods for micro- and nanopatterning materials surfaces has attracted the attention of many researchers in industry and academia as a consequence of the growing relevance of patterned surfaces in many technological fields, ranging from optoelectronics to biotechnology. In this work we explore, discuss, and demonstrate the possibility of extending the well-known molding and replication strategy for patterning ceramic materials with nanoscale resolution. To achieve this goal we have combined physical deposition methods, molecule-thick anti-sticking coatings, and nanostructured substrates as master surfaces. This new perspective on an "old technology", as molding is, provides an interesting alternative for high-resolution, direct surface-relief patterning of materials that currently requires expensive and time-consuming lithographic approaches.


Subject(s)
Biocompatible Materials/chemistry , Ceramics/chemistry , Nanotechnology/methods , Biotechnology/methods , Electrochemistry/methods , Electrons , Gold/chemistry , Hot Temperature , Materials Testing , Microscopy, Atomic Force , Microscopy, Scanning Tunneling , Silicon/chemistry , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL