Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ESC Heart Fail ; 8(6): 4674-4684, 2021 12.
Article in English | MEDLINE | ID: mdl-34490749

ABSTRACT

AIMS: Acute cellular rejection (ACR) following heart transplantation (HTX) is associated with long-term graft loss and increased mortality. Disturbed mitochondrial bioenergetics have been identified as pathophysiological drivers in heart failure, but their role in ACR remains unclear. We aimed to prove functional disturbances of myocardial bioenergetics in human heart transplant recipients with mild ACR by assessing myocardial mitochondrial respiration using high-resolution respirometry, digital image analysis of myocardial inflammatory cell infiltration, and clinical assessment of HTX patients. We hypothesized that (i) mild ACR is associated with impaired myocardial mitochondrial respiration and (ii) myocardial inflammation, systemic oxidative stress, and myocardial oedema relate to impaired mitochondrial respiration and myocardial dysfunction. METHODS AND RESULTS: We classified 35 HTX recipients undergoing endomyocardial biopsy according International Society for Heart and Lung Transplantation criteria to have no (0R) or mild (1R) ACR. Additionally, we quantified immune cell infiltration by immunohistochemistry and digital image analysis. We analysed mitochondrial substrate utilization in myocardial fibres by high-resolution respirometry and performed cardiovascular magnetic resonance (CMR). ACR (1R) was diagnosed in 12 patients (34%), while the remaining 23 patients revealed no signs of ACR (0R). Underlying cardiomyopathies (dilated cardiomyopathy 50% vs. 65%; P = 0.77), comorbidities (type 2 diabetes mellitus: 50% vs. 35%, P = 0.57; chronic kidney disease stage 5: 8% vs. 9%, P > 0.99; arterial hypertension: 59% vs. 30%, P = 0.35), medications (tacrolimus: 100% vs. 91%, P = 0.54; mycophenolate mofetil: 92% vs. 91%, P > 0.99; prednisolone: 92% vs. 96%, P > 0.99) and time post-transplantation (21.5 ± 26.0 months vs. 29.4 ± 26.4 months, P = 0.40) were similar between groups. Mitochondrial respiration was reduced by 40% in ACR (1R) compared with ACR (0R) (77.8 ± 23.0 vs. 128.0 ± 33.0; P < 0.0001). Quantitative assessment of myocardial CD3+ -lymphocyte infiltration identified ACR (1R) with a cut-off of >14 CD3+ -lymphocytes/mm2 (100% sensitivity, 82% specificity; P < 0.0001). Myocardial CD3+ infiltration (r = -0.41, P < 0.05), systemic oxidative stress (thiobarbituric acid reactive substances; r = -0.42, P < 0.01) and myocardial oedema depicted by global CMR derived T2 time (r = -0.62, P < 0.01) correlated with lower oxidative capacity and overt cardiac dysfunction (global longitudinal strain; r = -0.63, P < 0.01). CONCLUSIONS: Mild ACR with inflammatory cell infiltration associates with impaired mitochondrial bioenergetics in cardiomyocytes. Our findings may help to identify novel checkpoints in cardiac immune metabolism as potential therapeutic targets in post-transplant care.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Diseases , Heart Transplantation , Heart Transplantation/adverse effects , Humans , Mitochondria, Heart , Oxidative Stress
2.
J Cardiovasc Transl Res ; 12(2): 107-115, 2019 04.
Article in English | MEDLINE | ID: mdl-29589269

ABSTRACT

Mechanical ventricular unloading in advanced heart failure (HF) has been shown to induce reverse remodeling in myocardial tissues. Little is known about the impact of ventricular unloading on myocardial energy metabolism. We hypothesized that left ventricular unloading reduces myocardial mitochondrial reactive oxygen species (ROS) production and improves mitochondrial coupling efficiency in patients suffering from advanced HF. Left ventricular tissue specimens were harvested from explanted hearts at the time of transplantation. We compared myocardial metabolism in explanted hearts supported with an unloading ventricular assist device prior to transplantation (LVAD-HTX; n = 9) with tissue specimens of unsupported failing hearts (HTX; n = 6). Myocardial mitochondrial ROS production was decreased by 40% in LVAD-HTX compared to HTX patients (1.5 ± 0.3 vs. 0.9 ± 0.1 pmol/(s/mg); p < 0.05). High-resolution respirometry revealed increased mitochondrial coupling efficiency in LVAD-HTX patients (respiratory/control ratio 1.7 ± 0.2 vs. 1.2 ± 0.2; p < 0.05). In conclusion, ventricular unloading is related to decreased mitochondrial ROS production and increased coupling efficiency in myocardium of human failing hearts, suggesting a novel pathomechanism of unloading-associated cardioprotection.


Subject(s)
Energy Metabolism , Heart Failure/therapy , Heart-Assist Devices , Mitochondria, Heart/metabolism , Myocardium/metabolism , Prosthesis Implantation/instrumentation , Reactive Oxygen Species/metabolism , Ventricular Function, Left , Adult , Aged , Female , Heart Failure/metabolism , Heart Failure/pathology , Heart Failure/physiopathology , Humans , Male , Middle Aged , Mitochondria, Heart/pathology , Myocardium/pathology , Prosthesis Design , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...