Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioconjug Chem ; 34(9): 1653-1666, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37682243

ABSTRACT

Coxiella burnetii is the causative agent of Q fever, for which there is yet to be an FDA-approved vaccine. This bacterial pathogen has both extra- and intracellular stages in its life cycle, and therefore both a cell-mediated (i.e., T lymphocyte) and humoral (i.e., antibody) immune response are necessary for effective eradication of this pathogen. However, most proposed vaccines elicit strong responses to only one mechanism of adaptive immunity, and some can either cause reactogenicity or lack sufficient immunogenicity. In this work, we aim to apply a nanoparticle-based platform toward producing both antibody and T cell immune responses against C. burnetii. We investigated three approaches for conjugation of the immunodominant outer membrane protein antigen (CBU1910) to the E2 nanoparticle to obtain a consistent antigen orientation: direct genetic fusion, high affinity tris-NTA-Ni conjugation to polyhistidine-tagged CBU1910, and the SpyTag/SpyCatcher (ST/SC) system. Overall, we found that the ST/SC approach yielded nanoparticles loaded with the highest number of antigens while maintaining stability, enabling formulations that could simultaneously co-deliver the protein antigen (CBU1910) and adjuvant (CpG1826) on one nanoparticle (CBU1910-CpG-E2). Using protein microarray analyses, we found that after immunization, antigen-bound nanoparticle formulations elicited significantly higher antigen-specific IgG responses than soluble CBU1910 alone and produced more balanced IgG1/IgG2c ratios. Although T cell recall assays from these protein antigen formulations did not show significant increases in antigen-specific IFN-γ production compared to soluble CBU1910 alone, nanoparticles conjugated with a CD4 peptide epitope from CBU1910 generated elevated T cell responses in mice to both the CBU1910 peptide epitope and whole CBU1910 protein. These investigations highlight the feasibility of conjugating antigens to nanoparticles for tuning and improving both humoral- and cell-mediated adaptive immunity against C. burnetii.


Subject(s)
Coxiella burnetii , Q Fever , Vaccines , Animals , Mice , Q Fever/prevention & control , Antigens, Bacterial , Antibodies , Epitopes
2.
ACS Infect Dis ; 9(2): 239-252, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36607269

ABSTRACT

The vast majority of seasonal influenza vaccines administered each year are derived from virus propagated in eggs using technology that has changed little since the 1930s. The immunogenicity, durability, and breadth of response would likely benefit from a recombinant nanoparticle-based approach. Although the E2 protein nanoparticle (NP) platform has been previously shown to promote effective cell-mediated responses to peptide epitopes, it has not yet been reported to deliver whole protein antigens. In this study, we synthesized a novel maleimido tris-nitrilotriacetic acid (NTA) linker to couple protein hemagglutinin (HA) from H1N1 influenza virus to the E2 NP, and we evaluated the HA-specific antibody responses using protein microarrays. We found that recombinant H1 protein alone is immunogenic in mice but requires two boosts for IgG to be detected and is strongly IgG1 (Th2) polarized. When conjugated to E2 NPs, IgG2c is produced leading to a more balanced Th1/Th2 response. Inclusion of the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA) significantly enhances the immunogenicity of H1-E2 NPs while retaining the Th1/Th2 balance. Interestingly, broader homo- and heterosubtypic cross-reactivity is also observed for conjugated H1-E2 with MPLA, compared to unconjugated H1 with or without MPLA. These results highlight the potential of an NP-based delivery of HA for tuning the immunogenicity, breadth, and Th1/Th2 balance generated by recombinant HA-based vaccination. Furthermore, the modularity of this protein-protein conjugation strategy may have utility for future vaccine development against other human pathogens.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Nanoparticles , Humans , Animals , Mice , Influenza, Human/prevention & control , Hemagglutinins , Antibody Formation , Antibodies, Viral , Recombinant Proteins
3.
Sci Rep ; 12(1): 9198, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35654904

ABSTRACT

The effects of adjuvants for increasing the immunogenicity of influenza vaccines are well known. However, the effect of adjuvants on increasing the breadth of cross-reactivity is less well understood. In this study we have performed a systematic screen of different toll-like receptor (TLR) agonists, with and without a squalene-in-water emulsion on the immunogenicity of a recombinant trimerized hemagglutinin (HA) vaccine in mice after single-dose administration. Antibody (Ab) cross-reactivity for other variants within and outside the immunizing subtype (homosubtypic and heterosubtypic cross-reactivity, respectively) was assessed using a protein microarray approach. Most adjuvants induced broad IgG profiles, although the response to a combination of CpG, MPLA and AddaVax (termed 'IVAX-1') appeared more quickly and reached a greater magnitude than the other formulations tested. Antigen-specific plasma cell labeling experiments show the components of IVAX-1 are synergistic. This adjuvant preferentially stimulates CD4 T cells to produce Th1>Th2 type (IgG2c>IgG1) antibodies and cytokine responses. Moreover, IVAX-1 induces identical homo- and heterosubtypic IgG and IgA cross-reactivity profiles when administered intranasally. Consistent with these observations, a single-cell transcriptomics analysis demonstrated significant increases in expression of IgG1, IgG2b and IgG2c genes of B cells in H5/IVAX-1 immunized mice relative to naïve mice, as well as significant increases in expression of the IFNγ gene of both CD4 and CD8 T cells. These data support the use of adjuvants for enhancing the breath and durability of antibody responses of influenza virus vaccines.


Subject(s)
Influenza Vaccines , Influenza, Human , Vaccines, Synthetic/immunology , Adjuvants, Immunologic/pharmacology , Adjuvants, Pharmaceutic , Animals , Antibodies, Viral , Hemagglutinins , Humans , Immunoglobulin G/chemistry , Influenza Vaccines/immunology , Mice , Mice, Inbred BALB C
4.
Front Immunol ; 12: 653092, 2021.
Article in English | MEDLINE | ID: mdl-33815413

ABSTRACT

Q fever is caused by the obligate intracellular bacterium, Coxiella burnetii, a designated potential agent of bioterrorism because of its route of transmission, resistance to disinfectants, and low infectious dose. The only vaccine licensed for human use is Q-VAX® (Seqirus, licensed in Australia), a formalin-inactivated whole-cell vaccine, which produces severe local and systemic reactogenic responses in previously sensitized individuals. Accordingly, the U.S. Food and Drug Administration and other regulatory bodies around the world, have been reluctant to approve Q-VAX for widespread use. To obviate these adverse reactions, we prepared recombinant protein subunit vaccine candidates containing purified CBU1910, CBU0307, CBU0545, CBU0612, CBU0891, and CBU1398 proteins and TLR triagonist adjuvants. TLR triagonist adjuvants combine different TLR agonists to enhance immune responses to vaccine antigens. We tested both the protective efficacy and reactogenicity of our vaccine candidates in Hartley guinea pigs using intratracheal infection with live C. burnetii. While all of our candidates showed varying degrees of protection during challenge, local reactogenic responses were significantly reduced for one of our vaccine candidates when compared with a formalin-inactivated whole-cell vaccine. Our findings show that subunit vaccines combined with novel TLR triagonist adjuvants can generate protective immunity to C. burnetii infection while reducing reactogenic responses.


Subject(s)
Adjuvants, Immunologic/pharmacology , Bacterial Vaccines/pharmacology , Coxiella burnetii/immunology , Q Fever/prevention & control , Toll-Like Receptors/antagonists & inhibitors , Adjuvants, Immunologic/therapeutic use , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/pharmacology , Antigens, Bacterial/therapeutic use , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Vaccines/genetics , Bacterial Vaccines/therapeutic use , Disease Models, Animal , Guinea Pigs , Humans , Immunogenicity, Vaccine , Q Fever/immunology , Q Fever/microbiology , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Vaccines, Subunit/genetics , Vaccines, Subunit/pharmacology , Vaccines, Subunit/therapeutic use , Vaccines, Synthetic/genetics , Vaccines, Synthetic/pharmacology , Vaccines, Synthetic/therapeutic use
5.
Sci Rep ; 11(1): 6267, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737644

ABSTRACT

Antigen-adjuvant conjugation is known to enhance antigen-specific T-cell production in vaccine models, but scalable methods are required to generate site-specific conjugation for clinical translation of this technique. We report the use of the cell-free protein synthesis (CFPS) platform as a rapid method to produce large quantities (> 100 mg/L) of a model antigen, ovalbumin (OVA), with site-specific incorporation of p-azidomethyl-L-phenylalanine (pAMF) at two solvent-exposed sites away from immunodominant epitopes. Using copper-free click chemistry, we conjugated CpG oligodeoxynucleotide toll-like receptor 9 (TLR9) agonists to the pAMF sites on the mutant OVA protein. The OVA-CpG conjugates demonstrate enhanced antigen presentation in vitro and increased antigen-specific CD8+ T-cell production in vivo. Moreover, OVA-CpG conjugation reduced the dose of CpG needed to invoke antigen-specific T-cell production tenfold. These results highlight how site-specific conjugation and CFPS technology can be implemented to produce large quantities of covalently-linked antigen-adjuvant conjugates for use in clinical vaccines.


Subject(s)
Adjuvants, Immunologic/metabolism , Antigen Presentation , Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Mutant Proteins/immunology , Oligodeoxyribonucleotides/immunology , Ovalbumin/immunology , Animals , Antigen-Presenting Cells/immunology , Antigens/genetics , Cell-Free System , Click Chemistry/methods , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Models, Animal , Oligodeoxyribonucleotides/metabolism , Oligodeoxyribonucleotides/pharmacology , Ovalbumin/genetics , Toll-Like Receptor 9/agonists , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism , Transfection , Vaccination/methods , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
6.
J Immunol ; 204(3): 611-621, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31871024

ABSTRACT

Coxiella burnetii is an obligate intracellular bacterium and the causative agent of Q fever. C. burnetii is considered a potential bioterrorism agent because of its low infectious dose; resistance to heat, drying, and common disinfectants; and lack of prophylactic therapies. Q-Vax, a formalin-inactivated whole-bacteria vaccine, is currently the only prophylactic measure that is protective against C. burnetii infections but is not U.S. Food and Drug Administration approved. To overcome the safety concerns associated with the whole-bacteria vaccine, we sought to generate and evaluate recombinant protein subunit vaccines against C. burnetii To accomplish this, we formulated C. burnetii Ags with a novel TLR triagonist adjuvant platform, which used combinatorial chemistry to link three different TLR agonists together to form one adjuvanting complex. We evaluated the immunomodulatory activity of a panel of TLR triagonist adjuvants and found that they elicited unique Ag-specific immune responses both in vitro and in vivo. We evaluated our top candidates in a live C. burnetii aerosol challenge model in C56BL/6 mice and found that several of our novel vaccine formulations conferred varying levels of protection to the challenged animals compared with sham immunized mice, although none of our candidates were as protective as the commercial vaccine across all protection criteria that were analyzed. Our findings characterize a novel adjuvant platform and offer an alternative approach to generating protective and effective vaccines against C. burnetii.


Subject(s)
Bacterial Vaccines/immunology , Coxiella burnetii/physiology , Q Fever/immunology , Toll-Like Receptors/agonists , Adjuvants, Immunologic , Animals , Bacterial Vaccines/chemical synthesis , Combinatorial Chemistry Techniques , Disease Models, Animal , Female , Humans , Immunity , Immunogenicity, Vaccine , Mice , Mice, Inbred C57BL , Vaccines, Subunit
7.
ACS Cent Sci ; 5(7): 1137-1145, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31403067

ABSTRACT

Traditional vaccination strategies have failed to generate effective vaccines for many infections like tuberculosis and HIV. New approaches are needed for each type of disease. The protective immunity and distinct responses of many successful vaccines come from activating multiple Toll-like receptors (TLRs). Vaccines with multiple TLRs as adjuvants have proven effective in preclinical studies, but current research has not explored two important elements. First, few multi-TLR systems explore spatial organization-a critical feature of whole-cell vaccines. Second, no multi-TLR systems to date provide systematic analysis of the combinatorial space of three TLR agonists. Here, we present the first examination of the combinatorial space of several spatially defined triple-TLR adjuvants, by synthesizing a series of five triple-TLR agonists and testing their innate activity both in vitro and in vivo. The combinations were evaluated by measuring activation of immune stimulatory genes (Nf-κB, ISGs), cytokine profiles (IL12-p70, TNF-α, IL-6, IL-10, CCL2, IFN-α, IFN-ß, IFN-γ), and in vivo cytokine serum levels (IL-6, TNF-α, IL12-p40, IFN-α, IFN-ß). We demonstrate that linking TLR agonists substantially alters the resulting immune response compared to their unlinked counterparts and that each combination results in a distinct immune response, particularly between linked combinations. We show that combinations containing a TLR9 agonist produce more Th1 biasing immune response profiles, and that the effect is amplified upon conjugation. However, combinations containing TLR2/6 agonist are skewed toward TH2 biasing profiles despite the presence of TLR9. These results demonstrate the profound effects that conjugation and combinatorial administration of TLR agonists can have on immune responses, a critical element of vaccine development.

8.
Trends Biotechnol ; 37(4): 373-388, 2019 04.
Article in English | MEDLINE | ID: mdl-30470547

ABSTRACT

Pathogens comprise a diverse set of immunostimulatory molecules that activate the innate immune system during infection. The immune system recognizes distinct combinations of pathogenic molecules leading to multiple immune activation events that cooperate to produce enhanced immune responses, known as 'immune synergies'. Effective immune synergies are essential for the clearance of pathogens, thus inspiring novel adjuvant design to improve vaccines. We highlight current vaccine adjuvants and the importance of immune synergies to adjuvant and vaccine design. The focus is on new technologies used to study and apply immune synergies to adjuvant and vaccine development. Finally, we discuss how recent findings can be applied to the future design and characterization of synergistic adjuvants and vaccines.


Subject(s)
Adjuvants, Immunologic/isolation & purification , Adjuvants, Immunologic/pharmacology , Drug Discovery/methods , Vaccines/immunology , Vaccinology/methods , Animals , Humans
9.
Bioconjug Chem ; 29(3): 587-603, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29378134

ABSTRACT

Toll-like receptors (TLRs) are vital elements of the mammalian immune system that function by recognizing pathogen-associated molecular patterns (PAMPs), bridging innate and adaptive immunity. They have become a prominent therapeutic target for the treatment of infectious diseases, cancer, and allergies, with many TLR agonists currently in clinical trials or approved as immunostimulants. Numerous studies have shown that conjugation of TLR agonists to other molecules can beneficially influence their potency, toxicity, pharmacokinetics, or function. The functional properties of TLR agonist conjugates, however, are highly dependent on the ligation strategy employed. Here, we review the chemical structural requirements for effective functional TLR agonist conjugation. In addition, we provide similar analysis for those that have yet to be conjugated. Moreover, we discuss applications of covalent TLR agonist conjugation and their implications for clinical use.


Subject(s)
Adjuvants, Immunologic/chemistry , Toll-Like Receptors/agonists , Vaccines, Synthetic/chemistry , Adaptive Immunity , Adjuvants, Immunologic/chemical synthesis , Adjuvants, Immunologic/pharmacology , Animals , Chemistry Techniques, Synthetic/methods , Humans , Immunity, Innate , Models, Molecular , Toll-Like Receptors/immunology , Vaccines, Synthetic/immunology , Vaccines, Synthetic/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...