Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Curr Protoc ; 3(5): e742, 2023 May.
Article in English | MEDLINE | ID: mdl-37166213

ABSTRACT

Prostate cancer (PCa) is the most common malignancy and the second leading cause of cancer-related death amongst men in the United States. Neuroendocrine prostate cancer (NEPC) can either arise de novo or emerge as a consequence of therapy. De novo NEPC is rare, with an incidence of <2% of all PCa cases. In contrast, treatment-induced NEPC is frequent with >20% of patients with metastatic castration-resistant prostate cancer (CRPC) reported to progress to neuroendocrine (NE) differentiation. The emergence of treatment-induced NEPC is linked to the increased therapeutic pressure, due to the broad application of androgen deprivation therapy (ADT) for PCa management and the development of novel more potent androgen receptor (AR) pathway inhibitors. NEPC is a high-grade tumor type characterized by aggressive phenotype and clinical behavior. Patients affected by NEPC frequently develop visceral metastases and have a poor prognosis. The molecular mechanisms underlying the development and progression of NEPC are still poorly understood. Transcriptional and epigenetic reprogramming appears to be involved in NE progression. In this review, we aim to provide a comprehensive view of the available models for NEPC detailing their strengths and limitations. Moreover, we describe novel approaches to expand the repertoire of preclinical models to better study, prevent, or reverse NEPC. The integration of multiple preclinical models along with molecular and omics approaches will provide important insights to understand disease progression and to devise novel therapeutic strategies for the management of NEPC in the near future. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of organoids starting from the prostate gland of a GEMM or a human PDX Basic Protocol 2: Ex vivo tumor sphere formation.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Prostatic Neoplasms/metabolism , Androgen Antagonists/therapeutic use , Prostate/metabolism , Prostate/pathology , Androgen Receptor Antagonists/therapeutic use
2.
Nat Commun ; 12(1): 4147, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34230470

ABSTRACT

The TMPRSS2-ERG gene fusion is the most frequent alteration observed in human prostate cancer. However, its role in disease progression is still unclear. In this study, we uncover an important mechanism promoting ERG oncogenic activity. We show that ERG is methylated by Enhancer of zest homolog 2 (EZH2) at a specific lysine residue (K362) located within the internal auto-inhibitory domain. Mechanistically, K362 methylation modifies intra-domain interactions, favors DNA binding and enhances ERG transcriptional activity. In a genetically engineered mouse model of ERG fusion-positive prostate cancer (Pb-Cre4 Pten flox/flox Rosa26-ERG, ERG/PTEN), ERG K362 methylation is associated with PTEN loss and progression to invasive adenocarcinomas. In both ERG positive VCaP cells and ERG/PTEN mice, PTEN loss results in AKT activation and EZH2 phosphorylation at serine 21 that favors ERG methylation. We find that ERG and EZH2 interact and co-occupy several sites in the genome forming trans-activating complexes. Consistently, ERG/EZH2 co-regulated target genes are deregulated preferentially in tumors with concomitant ERG gain and PTEN loss and in castration-resistant prostate cancers. Collectively, these findings identify ERG methylation as a post-translational modification sustaining disease progression in ERG-positive prostate cancers.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/metabolism , Lysine/metabolism , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins/metabolism , Prostatic Neoplasms/metabolism , Serine Endopeptidases/metabolism , Transcriptional Regulator ERG/metabolism , Adenocarcinoma/genetics , Animals , Enhancer of Zeste Homolog 2 Protein/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Male , Mice , Mice, Knockout , Oncogene Proteins/genetics , Oncogene Proteins, Fusion/genetics , Prostatic Neoplasms/genetics , Protein Conformation , Protein Processing, Post-Translational , Sequence Alignment , Serine Endopeptidases/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcriptional Regulator ERG/genetics
3.
Nat Commun ; 12(1): 734, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33531470

ABSTRACT

Driver genes with a mutually exclusive mutation pattern across tumor genomes are thought to have overlapping roles in tumorigenesis. In contrast, we show here that mutually exclusive prostate cancer driver alterations involving the ERG transcription factor and the ubiquitin ligase adaptor SPOP are synthetic sick. At the molecular level, the incompatible cancer pathways are driven by opposing functions in SPOP. ERG upregulates wild type SPOP to dampen androgen receptor (AR) signaling and sustain ERG activity through degradation of the bromodomain histone reader ZMYND11. Conversely, SPOP-mutant tumors stabilize ZMYND11 to repress ERG-function and enable oncogenic androgen receptor signaling. This dichotomy regulates the response to therapeutic interventions in the AR pathway. While mutant SPOP renders tumor cells susceptible to androgen deprivation therapies, ERG promotes sensitivity to high-dose androgen therapy and pharmacological inhibition of wild type SPOP. More generally, these results define a distinct class of antagonistic cancer drivers and a blueprint toward their therapeutic exploitation.


Subject(s)
Nuclear Proteins/metabolism , Oncogene Proteins/metabolism , Prostatic Neoplasms/metabolism , Repressor Proteins/metabolism , Transcriptional Regulator ERG/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Animals , Biomarkers, Tumor/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HEK293 Cells , Humans , Immunohistochemistry , Immunoprecipitation , Male , Mice , Mice, Nude , Mutation/genetics , Nuclear Proteins/genetics , Oncogene Proteins/genetics , Prostatic Neoplasms/genetics , Protein Binding , Proteomics , Receptors, Androgen/metabolism , Repressor Proteins/genetics , Signal Transduction/physiology , Transcriptional Regulator ERG/genetics , Ubiquitin-Protein Ligase Complexes/genetics
4.
Commun Biol ; 4(1): 119, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33500545

ABSTRACT

Extracellular vesicles (EVs) are relevant means for transferring signals across cells and facilitate propagation of oncogenic stimuli promoting disease evolution and metastatic spread in cancer patients. Here, we investigated the release of miR-424 in circulating small EVs or exosomes from prostate cancer patients and assessed the functional implications in multiple experimental models. We found higher frequency of circulating miR-424 positive EVs in patients with metastatic prostate cancer compared to patients with primary tumors and BPH. Release of miR-424 in small EVs was enhanced in cell lines (LNCaPabl), transgenic mice (Pb-Cre4;Ptenflox/flox;Rosa26ERG/ERG) and patient-derived xenograft (PDX) models of aggressive disease. EVs containing miR-424 promoted stem-like traits and tumor-initiating properties in normal prostate epithelial cells while enhanced tumorigenesis in transformed prostate epithelial cells. Intravenous administration of miR-424 positive EVs to mice, mimicking blood circulation, promoted miR-424 transfer and tumor growth in xenograft models. Circulating miR-424 positive EVs from patients with aggressive primary and metastatic tumors induced stem-like features when supplemented to prostate epithelial cells. This study establishes that EVs-mediated transfer of miR-424 across heterogeneous cell populations is an important mechanism of tumor self-sustenance, disease recurrence and progression. These findings might indicate novel approaches for the management and therapy of prostate cancer.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cell-Derived Microparticles/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Prostatic Neoplasms , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/metabolism , Cell-Derived Microparticles/genetics , Extracellular Vesicles/genetics , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , MicroRNAs/genetics , Models, Theoretical , Neoplasm Invasiveness , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology
6.
Cancers (Basel) ; 12(1)2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31936761

ABSTRACT

In this study, we extracted prostate cell-specific gene sets (metagenes) to define the epithelial differentiation status of prostate cancers and, using a deconvolution-based strategy, interrogated thousands of primary and metastatic tumors in public gene profiling datasets. We identified a subgroup of primary prostate tumors with low luminal epithelial enrichment (LumElow). LumElow tumors were associated with higher Gleason score and mutational burden, reduced relapse-free and overall survival, and were more likely to progress to castration-resistant prostate cancer (CRPC). Using discriminant function analysis, we generate a predictive 10-gene classifier for clinical implementation. This mini-classifier predicted with high accuracy the luminal status in both primary tumors and CRPCs. Immunohistochemistry for COL4A1, a low-luminal marker, sustained the association of attenuated luminal phenotype with metastatic disease. We found also an association of LumE score with tumor phenotype in genetically engineered mouse models (GEMMs) of prostate cancer. Notably, the metagene approach led to the discovery of drugs that could revert the low luminal status in prostate cell lines and mouse models. This study describes a novel tool to dissect the intrinsic heterogeneity of prostate tumors and provide predictive information on clinical outcome and treatment response in experimental and clinical samples.

7.
Eur Urol Oncol ; 2(4): 415-424, 2019 07.
Article in English | MEDLINE | ID: mdl-31277777

ABSTRACT

BACKGROUND: The TMPRSS2-ERG gene fusion is the most frequent genetic rearrangement in prostate cancers and results in broad transcriptional reprogramming and major phenotypic changes. Interaction and cooperation of ERG and SP1 may be instrumental in sustaining the tumorigenic and metastatic phenotype and could represent a potential vulnerability in ERG fusion-positive tumors. OBJECTIVE: To test the activity of EC-8042, a compound able to block SP1, in cellular and mouse models of ERG-positive prostate cancer. DESIGN, SETTING, AND PARTICIPANTS: We evaluated the activity of EC-8042 in cell cultures and ERG/PTEN transgenic/knockout mice that provide reliable models for testing novel therapeutics in this specific disease context. Using a new protocol to generate tumor spheroids from ERG/PTEN mice, we also examined the effects of EC-8042 on tumor-propagating stem-like cancer cells with high self-renewal and tumorigenic capabilities. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The efficacy of EC-8042 was determined by measuring the proliferative capacity and target gene expression in cell cultures, invasive and metastatic capabilities in chick chorioallantoic membrane assays, and tumor development in mice. Significance was determined using statistical test. RESULTS AND LIMITATIONS: EC-8042 blocked transcription of ERG-regulated genes and reverted the invasive and metastatic phenotype of VCaP cells. EC-8042 blocked the expansion of stem-like tumor cells in tumor spheroids from VCaP cells and mouse-derived tumors. In ERG/PTEN mice, systemic treatment with EC-8042 inhibited ERG-regulated gene transcription, tumor progression, and tumor-propagating stem-like tumor cells. CONCLUSIONS: Our data support clinical testing of EC-8042 for the treatment of ERG-positive prostate cancer in precision medicine approaches. PATIENT SUMMARY: In this study, EC-8042, a novel compound with a favorable pharmacological and toxicological profile, exhibited relevant activity in cell cultures and in vivo in a genetically engineered mouse model that closely recapitulates the features of clinically aggressive ERG-positive prostate cancer. Our data indicate that further evaluation of EC-8042 in clinical trials is warranted.


Subject(s)
Plicamycin/analogs & derivatives , Prostatic Neoplasms/genetics , Sp1 Transcription Factor/antagonists & inhibitors , Transcriptional Regulator ERG/genetics , Animals , Cell Line, Tumor , Humans , Male , Mice, Transgenic , Neoplastic Stem Cells , PTEN Phosphohydrolase/genetics , Plicamycin/pharmacology , Plicamycin/therapeutic use , Prostatic Neoplasms/drug therapy
8.
Front Oncol ; 9: 385, 2019.
Article in English | MEDLINE | ID: mdl-31143708

ABSTRACT

Prostate cancer is the most common malignancy in men and the second cause of cancer-related deaths in western countries. Despite the progress in the treatment of localized prostate cancer, there is still lack of effective therapies for the advanced forms of the disease. Most patients with advanced prostate cancer become resistant to androgen deprivation therapy (ADT), which remains the main therapeutic option in this setting, and progress to lethal metastatic castration-resistant prostate cancer (mCRPC). Current therapies for prostate cancer preferentially target proliferating, partially differentiated, and AR-dependent cancer cells that constitute the bulk of the tumor mass. However, the subpopulation of tumor-initiating or tumor-propagating stem-like cancer cells is virtually resistant to the standard treatments causing tumor relapse at the primary or metastatic sites. Understanding the pathways controlling the establishment, expansion and maintenance of the cancer stem cell (CSC) subpopulation is an important step toward the development of more effective treatment for prostate cancer, which might enable ablation or exhaustion of CSCs and prevent treatment resistance and disease recurrence. In this review, we focus on the impact of transcriptional regulators on phenotypic reprogramming of prostate CSCs and provide examples supporting the possibility of inhibiting maintenance and expansion of the CSC pool in human prostate cancer along with the currently available methodological approaches. Transcription factors are key elements for instructing specific transcriptional programs and inducing CSC-associated phenotypic changes implicated in disease progression and treatment resistance. Recent studies have shown that interfering with these processes causes exhaustion of CSCs with loss of self-renewal and tumorigenic capability in prostate cancer models. Targeting key transcriptional regulators in prostate CSCs is a valid therapeutic strategy waiting to be tested in clinical trials.

9.
Cell Metab ; 30(2): 303-318.e6, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31130467

ABSTRACT

Cancer stem cells (CSCs) contribute to disease progression and treatment failure in human cancers. The balance among self-renewal, differentiation, and senescence determines the expansion or progressive exhaustion of CSCs. Targeting these processes might lead to novel anticancer therapies. Here, we uncover a novel link between BRD4, mitochondrial dynamics, and self-renewal of prostate CSCs. Targeting BRD4 by genetic knockdown or chemical inhibitors blocked mitochondrial fission and caused CSC exhaustion and loss of tumorigenic capability. Depletion of CSCs occurred in multiple prostate cancer models, indicating a common vulnerability and dependency on mitochondrial dynamics. These effects depended on rewiring of the BRD4-driven transcription and repression of mitochondrial fission factor (Mff). Knockdown of Mff reproduced the effects of BRD4 inhibition, whereas ectopic Mff expression rescued prostate CSCs from exhaustion. This novel concept of targeting mitochondrial plasticity in CSCs through BRD4 inhibition provides a new paradigm for developing more effective treatment strategies for prostate cancer.


Subject(s)
Epigenesis, Genetic/genetics , Mitochondria/genetics , Mitochondrial Dynamics/genetics , Neoplastic Stem Cells/metabolism , Prostatic Neoplasms/metabolism , Animals , Cell Cycle , Cell Proliferation , Cellular Senescence , Humans , Male , Mice , Mice, Nude , Mitochondria/metabolism , Mitochondria/pathology , Prostatic Neoplasms/pathology , Tumor Cells, Cultured
10.
Nat Commun ; 8: 15622, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28555645

ABSTRACT

Long noncoding RNAs are emerging players in the epigenetic machinery with key roles in development and diseases. Here we uncover a complex network comprising a promoter-associated noncoding RNA (paRNA), microRNA and epigenetic regulators that controls transcription of the tumour suppressor E-cadherin in epithelial cancers. E-cadherin silencing relies on the formation of a complex between the paRNA and microRNA-guided Argonaute 1 that, together, recruit SUV39H1 and induce repressive chromatin modifications in the gene promoter. A single nucleotide polymorphism (rs16260) linked to increased cancer risk alters the secondary structure of the paRNA, with the risk allele facilitating the assembly of the microRNA-guided Argonaute 1 complex and gene silencing. Collectively, these data demonstrate the role of a paRNA in E-cadherin regulation and the impact of a noncoding genetic variant on its function. Deregulation of paRNA-based epigenetic networks may contribute to cancer and other diseases making them promising targets for drug discovery.


Subject(s)
Argonaute Proteins/genetics , Cadherins/genetics , Eukaryotic Initiation Factors/genetics , Gene Silencing , Methyltransferases/genetics , Neoplasms/genetics , Prostatic Neoplasms/genetics , Repressor Proteins/genetics , Alleles , Antigens, CD , Cell Differentiation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , Male , Mutagenesis, Site-Directed , Nucleic Acid Conformation , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Prostatic Neoplasms/metabolism
11.
J Clin Invest ; 126(12): 4585-4602, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27820701

ABSTRACT

Mutations and deletions in components of ubiquitin ligase complexes that lead to alterations in protein turnover are important mechanisms in driving tumorigenesis. Here we describe an alternative mechanism involving upregulation of the microRNA miR-424 that leads to impaired ubiquitination and degradation of oncogenic transcription factors in prostate cancers. We found that miR-424 targets the E3 ubiquitin ligase COP1 and identified STAT3 as a key substrate of COP1 in promoting tumorigenic and cancer stem-like properties in prostate epithelial cells. Altered protein turnover due to impaired COP1 function led to accumulation and enhanced basal and cytokine-induced activity of STAT3. We further determined that loss of the ETS factor ESE3/EHF is the initial event that triggers the deregulation of the miR-424/COP1/STAT3 axis. COP1 silencing and STAT3 activation were effectively reverted by blocking of miR-424, suggesting a possible strategy to attack this key node of tumorigenesis in ESE3/EHF-deficient tumors. These results establish miR-424 as an oncogenic effector linked to noncanonical activation of STAT3 and as a potential therapeutic target.


Subject(s)
MicroRNAs/metabolism , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/metabolism , Prostatic Neoplasms/metabolism , RNA, Neoplasm/metabolism , STAT3 Transcription Factor/metabolism , Animals , Cell Line, Tumor , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , Neoplasm Proteins/genetics , Neoplastic Stem Cells/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Neoplasm/genetics , STAT3 Transcription Factor/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
12.
Oncotarget ; 7(47): 76756-76768, 2016 Nov 22.
Article in English | MEDLINE | ID: mdl-27732936

ABSTRACT

Metastatic prostate cancer represents a yet unsolved clinical problem due to the high frequency of relapse and treatment resistance. Understanding the pathways that lead to prostate cancer progression is an important task to prevent this deadly disease. The ETS transcription factor ESE3/EHF has an important role in differentiation of human prostate epithelial cells. Loss of ESE3/EHF in prostate epithelial cells determines transformation, epithelial-to-mesenchymal transition (EMT) and acquisition of stem-like properties. In this study we identify IL-6 as a direct target of ESE3/EHF that is activated in prostate epithelial cells upon loss of ESE3/EHF. ESE3/EHF and IL-6 were significantly inversely correlated in prostate tumors. Chromatin immunoprecipitation confirmed binding of ESE3/EHF to a novel ETS binding site in the IL-6 gene promoter. Inhibition of IL-6 reverted transformation and stem-like phenotype in tumorigenic ESE3/EHF knockdown prostate epithelial cell models. Conversely, IL-6 stimulation induced malignant phenotypes, stem-like behavior and STAT3 activation. Increased level of IL-6 was observed in prostatospheres compared with adherent bulk cancer cells and this was associated with stronger activation of STAT3. Human prostate tumors with IL-6 elevation and loss of ESE3/EHF were associated with STAT3 activation and displayed upregulation of genes related to cell adhesion, cancer stem-like and metastatic spread. Pharmacological inhibition of IL-6/STAT3 activation by a JAK inhibitor restrained cancer stem cell growth in vitro and inhibited self-renewal in vivo. This study identifies a novel connection between the transcription factor ESE3/EHF and the IL-6/JAK/STAT3 pathway and suggests that targeting this axis might be preferentially beneficial in tumors with loss of ESE3/EHF.


Subject(s)
Gene Expression Regulation, Neoplastic , Interleukin-6/genetics , Neoplastic Stem Cells/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , STAT3 Transcription Factor/metabolism , Transcription Factors/metabolism , Cell Line, Tumor , Cell Self Renewal/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Progression , Epithelial-Mesenchymal Transition/genetics , Humans , Interleukin-6/metabolism , Janus Kinase 2/antagonists & inhibitors , Male , Models, Biological , Neoplastic Stem Cells/pathology , Phenotype , Promoter Regions, Genetic , Prostatic Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , RNA Interference , RNA, Small Interfering/genetics , Transcriptional Activation
13.
Cancer Res ; 76(12): 3629-43, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27197175

ABSTRACT

Although cancer stem-like cells (CSC) are thought to be the most tumorigenic, metastatic, and therapy-resistant cell subpopulation within human tumors, current therapies target bulk tumor cells while tending to spare CSC. In seeking to understand mechanisms needed to acquire and maintain a CSC phenotype in prostate cancer, we investigated connections between the ETS transcription factor ESE3/EHF, the Lin28/let-7 microRNA axis, and the CSC subpopulation in this malignancy. In normal cells, we found that ESE3/EHF bound and repressed promoters for the Lin28A and Lin28B genes while activating transcription and maturation of the let-7 microRNAs. In cancer cells, reduced expression of ESE3/EHF upregulated Lin28A and Lin28B and downregulated the let-7 microRNAs. Notably, we found that deregulation of the Lin28/let-7 axis with reduced production of let-7 microRNAs was critical for cell transformation and expansion of prostate CSC. Moreover, targeting Lin28A/Lin28B in cell lines and tumor xenografts mimicked the effects of ESE3/EHF and restrained tumor-initiating and self-renewal properties of prostate CSC both in vitro and in vivo These results establish that tight control by ESE3/EHF over the Lin28/let-7 axis is a critical barrier to malignant transformation, and they also suggest new strategies to antagonize CSC in human prostate cancer for therapeutic purposes. Cancer Res; 76(12); 3629-43. ©2016 AACR.


Subject(s)
MicroRNAs/physiology , Neoplastic Stem Cells/pathology , Prostatic Neoplasms/pathology , RNA-Binding Proteins/physiology , Transcription Factors/physiology , Animals , Cell Transformation, Neoplastic , Humans , Male , Mice , Prostatic Neoplasms/etiology
14.
Mol Cancer Ther ; 15(5): 806-18, 2016 05.
Article in English | MEDLINE | ID: mdl-26826115

ABSTRACT

Cancer stem cells (CSC) contribute to disease progression and treatment failure in prostate cancer because of their intrinsic resistance to current therapies. The transcription factors NF-κB and STAT3 are frequently activated in advanced prostate cancer and sustain expansion of prostate CSCs. EC-70124 is a novel chimeric indolocarbazole compound generated by metabolic engineering of the biosynthetic pathways of glycosylated indolocarbazoles, such as staurosporine and rebeccamycin. In vitro kinome analyses revealed that EC-70124 acted as a multikinase inhibitor with potent activity against IKKß and JAK2. In this study, we show that EC-70124 blocked concomitantly NF-κB and STAT3 in prostate cancer cells and particularly prostate CSCs, which exhibited overactivation of these transcription factors. Phosphorylation of IkB and STAT3 (Tyr705), the immediate targets of IKKß and JAK2, respectively, was rapidly inhibited in vitro by EC-70124 at concentrations that were well below plasma levels in mice. Furthermore, the drug blocked activation of NF-κB and STAT3 reporters and suppressed transcription of their target genes. Treatment with EC-70124 impaired proliferation and colony formation in vitro and delayed development of prostate tumor xenografts. Notably, EC-70124 had profound effects on the prostate CSC subpopulation both in vitro and in vivo Thus, EC-70124 is a potent inhibitor of the NF-κB and STAT3 signaling pathways and blocked tumor growth and maintenance of prostate CSCs. EC-70124 may provide the basis for developing new therapeutic strategies that combine agents directed to the CSC component and the bulk tumor cell population for treatment of advanced prostate cancer. Mol Cancer Ther; 15(5); 806-18. ©2016 AACR.


Subject(s)
Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/metabolism , NF-kappa B/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Prostatic Neoplasms/etiology , Prostatic Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , STAT3 Transcription Factor/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Glycosylation , Humans , Male , Mice , Prostatic Neoplasms/pathology , Signal Transduction/drug effects , Tumor Burden , Xenograft Model Antitumor Assays
15.
Cancer Res ; 73(22): 6816-27, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24063893

ABSTRACT

Several studies link disease progression, recurrence, and treatment failures to the cancer stem-like cell (CSC) subpopulation within the heterogeneous tumor cell population. Myc is a transcription factor having a central function in stem cell biology and in human cancers. Hence, Myc represents an attractive target to develop CSC-specific therapies. Recent findings suggest that Myc transcription can be silenced using an RNA interference (RNAi)-based strategy that targets noncoding promoter-associated RNA (paRNA) overlapping the transcription start site. In this study, we investigated the effects of silencing Myc transcription on prostate CSC in cell culture and xenograft models of human prostate cancer. Treatment with an effective promoter-targeting siRNA reduced the fraction of CSCs, leading to reduced self-renewal, tumor-initiating, and metastatic capability. Combined analysis of stem-like cells and senescence markers indicated that Myc silencing triggered a phenotypic shift and senescence in the CSC subpopulation. Notably, systemic delivery of the promoter-targeting siRNA in the xenograft model produced a striking suppression in the development of prostate tumors. Our results support a pivotal role for Myc in CSC maintenance and show that Myc targeting via RNAi-based transcriptional silencing can trigger CSC senescence and loss of their tumor-initiating capability. More generally, our findings demonstrate the efficacy of RNAi-based transcriptional strategies and the potential to target regulatory noncoding paRNAs for therapeutic applications.


Subject(s)
Carcinoma/pathology , Gene Expression Regulation, Neoplastic/drug effects , Genes, myc , Neoplastic Stem Cells/drug effects , Prostatic Neoplasms/pathology , RNA, Small Interfering/pharmacology , Animals , Carcinoma/genetics , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Cellular Senescence/drug effects , Cellular Senescence/genetics , Genes, myc/drug effects , Humans , Male , Mice , Neoplastic Stem Cells/pathology , Prostatic Neoplasms/genetics , RNA Interference , Transcription, Genetic/drug effects , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
16.
Cancer Res ; 73(14): 4533-47, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23687337

ABSTRACT

Chromosomal translocations leading to deregulated expression of ETS transcription factors are frequent in prostate tumors. Here, we report a novel mechanism leading to oncogenic activation of the ETS factor ESE1/ELF3 in prostate tumors. ESE1/ELF3 was overexpressed in human primary and metastatic tumors. It mediated transforming phenotypes in vitro and in vivo and induced an inflammatory transcriptome with changes in relevant oncogenic pathways. ESE1/ELF3 was induced by interleukin (IL)-1ß through NF-κB and was a crucial mediator of the phenotypic and transcriptional changes induced by IL-1ß in prostate cancer cells. This linkage was mediated by interaction of ESE1/ELF3 with the NF-κB subunits p65 and p50, acting by enhancing their nuclear translocation and transcriptional activity and by inducing p50 transcription. Supporting these findings, gene expression profiling revealed an enrichment of NF-κB effector functions in prostate cancer cells or tumors expressing high levels of ESE1/ELF3. We observed concordant upregulation of ESE1/ELF3 and NF-κB in human prostate tumors that was associated with adverse prognosis. Collectively, our results define an important new mechanistic link between inflammatory signaling and the progression of prostate cancer.


Subject(s)
DNA-Binding Proteins/metabolism , NF-kappa B/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-ets/metabolism , Proto-Oncogene Proteins/metabolism , Transcription Factors/metabolism , Animals , Cell Line, Tumor , DNA-Binding Proteins/genetics , Disease Progression , Gene Expression , Gene Knockdown Techniques , Heterografts , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , NF-kappa B/genetics , Prognosis , Prostatic Neoplasms/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-ets/genetics , Transcription Factors/genetics , Transcription, Genetic , Transcriptional Activation , Transcriptome
17.
Cancer Res ; 72(11): 2889-900, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22505649

ABSTRACT

Cancer stem cells (CSC) play a significant role in tumor progression, disease recurrence, and treatment failure. Here, we show that the endogenously expressed ETS transcription factor ESE3/EHF controls prostate epithelial cell differentiation and stem-like potential. We found that loss of ESE3/EHF induced epithelial-to-mesenchymal transition (EMT), stem-like features, and tumor-initiating and metastatic properties in prostate epithelial cells, and reexpression of ESE3/EHF inhibited the stem-like properties and tumorigenic potential of prostate cancer cells. Mechanistically, ESE3/EHF repressed the expression of key EMT and CSC genes, including TWIST1, ZEB2, BMI1, and POU5F1. Analysis of human tissue microarrays showed that reduced ESE3/EHF expression is an early event in tumorigenesis, frequently occurring independently of other ETS gene alterations. Additional analyses linked loss of ESE3/EHF expression to a distinct group of prostate tumors with distinctive molecular and biologic characteristics, including increased expression of EMT and CSC genes. Low ESE3/EHF expression was also associated with increased biochemical recurrence of prostate cancer and reduced overall survival after prostatectomy. Collectively, our findings define a key role for ESE3/EHF in the development of a subset of prostate tumors and highlight the clinical importance of identifying molecularly defined tumor subgroups.


Subject(s)
Cell Differentiation , Epithelial Cells/cytology , Epithelial-Mesenchymal Transition , Neoplastic Stem Cells/pathology , Prostatic Neoplasms/pathology , Transcription Factors/physiology , Animals , Gene Expression Regulation , Humans , Male , Mice , Trans-Activators/analysis , Transcriptional Regulator ERG
18.
Int J Dev Biol ; 55(1): 65-72, 2011.
Article in English | MEDLINE | ID: mdl-21425081

ABSTRACT

Neural Crest Cells (NCCs) are transient multipotent migratory cells that derive from the embryonic neural crest which is itself derived from the margin of the neural tube. DNA repair genes are expressed in the early stages of mammalian development to reduce possible replication errors and genotoxic damage. Some birth defects and cancers are due to inappropriate or defective DNA repair machinery, indicating that the proper functioning of DNA repair genes in the early stages of fetal development is essential for maintaining DNA integrity. We performed a genome-wide expression analysis combining laser capture microdissection (LCM) and high-density oligo-microarray of murine NCCs at pre-migratory embryonic days 8.5 (E8.5), and at E13.5, as well as on neural crest-derived cells from the adrenal medulla at postnatal day 90. We found 11 genes involved in DNA repair activity (response to DNA damage stimulus, DNA damage checkpoint, base-excision repair, mismatch repair), over-expressed in the early stages of mouse embryo development. Expression of these 11 genes was very low or undetectable in the differentiated adrenal medulla of the adult mouse. Amongst the 11 genes, 6 had not been previously reported as being over-expressed during mouse embryonic development. High expression of DNA repair genes in enriched NCCs during early embryonic development may contribute to maintaining DNA integrity whilst failure of some of these genes may be associated with the onset of genetic disease and cancer. Our model of enriched murine NCCs and neural crest-derived cells can be used to elucidate the key roles of genes during normal embryonic development and in cancer pathogenesis.


Subject(s)
Cell Movement/genetics , DNA Repair/genetics , Gene Expression Profiling , Neural Crest/cytology , Animals , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Down-Regulation , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Female , Gene Expression Regulation, Developmental , Male , Mice , Microarray Analysis , Neural Crest/embryology , Neural Crest/growth & development , Pregnancy , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
19.
Cancer ; 113(6): 1412-22, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18671248

ABSTRACT

BACKGROUND: Neuroblastic tumors (NTs) are largely comprised of neuroblastic (Nb) cells with various quantities of Schwannian stromal (SS) cells. NTs show a variable genetic heterogeneity. NT gene expression profiles reported so far have not taken into account the cellular components. The authors reported the genome-wide expression analysis of whole tumors and microdissected Nb and SS cells. METHODS: The authors analyzed gene expression profiles of 10 stroma-poor NTs (NTs-SP) and 9 stroma-rich NTs (NTs-SR) by microarray technology. Nb and SS cells were isolated by laser microdissection from NTs-SP and NTs-SR and probed with microarrays. Gene expression data were analyzed by the Significance Analysis of Microarrays (SAM) and Game Theory (GT) methods, the latter applied for the first time to microarray data evaluation. RESULTS: SAM identified 84 genes differentially expressed between NTs-SP and NTs-SR, whereas 50 were found by GT. NTs-SP mainly express genes associated with cell replication, nervous system development, and antiapoptotic pathways, whereas NTs-SR express genes of cell-cell communication and apoptosis. Combining SAM and GT, the authors found 16 common genes driving the separation between NTs-SP and NTs-SR. Five genes overexpressed in NTs-SP encode for nuclear proteins (CENPF, EYA1, PBK, TOP2A, TFAP2B), whereas only 1 of 11 highly expressed genes in NTs-SR encodes for a nuclear receptor (NR4A2). CONCLUSIONS: The results showed that NT-SP and NT-SR gene signatures differ for a set of genes involved in distinct pathways, and the authors demonstrated a low intratumoral heterogeneity at the mRNA level in both NTs-SP and NTs-SR. The combination of SAM and GT methods may help to better identify gene expression profiling in NTs.


Subject(s)
Biomarkers, Tumor/genetics , Game Theory , Gene Expression Profiling , Genome, Human , Neuroblastoma/genetics , Oligonucleotide Array Sequence Analysis , Stromal Cells/pathology , Biomarkers, Tumor/metabolism , Blotting, Western , Gene Expression Regulation, Neoplastic , Genes, Regulator , Humans , Immunoenzyme Techniques , Lasers , Microdissection , Neuroblastoma/metabolism , Neuroblastoma/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Stromal Cells/metabolism , Tumor Cells, Cultured
20.
Cancer Genet Cytogenet ; 177(1): 20-9, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17693187

ABSTRACT

Neuroblastoma (NB) is a pediatric tumor characterized by high genetic heterogeneity. Although the prognostic significance of some genomic abnormalities (i.e., MYCN amplification, 1p loss, and 17q gain) is recognized, genes that are involved in chromosome rearrangements remain largely unknown. Considerable progress has been made over the last years in characterizing DNA abnormalities by metaphase comparative genomic hybridization (mCGH) and array CGH (aCGH). Here we report a pilot study of 5 localized and 12 disseminated NB by 44,000 and of 4 out of 17 cases by 244,000 oligonucleotide aCGH. Localized tumors were predominantly characterized by losses of whole chromosomes 3, 4, 10, and 16, and gains of 6, 7, 8, 13, 17, 18, and 20, whereas disseminated tumors showed several structural aberrations including 17q gain and 3p and 11q losses. Characterization of chromosome 2p in MYCN-amplified NB revealed several structural rearrangements with regions of gain interspersed among sites of amplification, indicating that the MYCN amplicon may encompass several genes. The high-resolution zooming in chromosomal aberrant regions detected several micro-deletions and micro-amplifications in the NB genome. Our results indicate that the increased sensitivity of the aCGH also allows the identification of DNA aberrations in challenging samples (i.e., NB showing tissue and genetic heterogeneity).


Subject(s)
Chromosome Aberrations , DNA, Neoplasm/genetics , Neuroblastoma/diagnosis , Neuroblastoma/genetics , Nucleic Acid Hybridization/methods , Oligonucleotide Array Sequence Analysis , Blotting, Southern , Chromosome Mapping , Chromosomes, Human/genetics , Genes, myc/genetics , Genome, Human , Humans , Karyotyping , Neuroblastoma/secondary , Pilot Projects , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL