Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Vascul Pharmacol ; : 107383, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830455

ABSTRACT

OBJECTIVE: Diabetes and hypertension are important risk factors for vascular disease, including atherosclerosis. A driving factor in this process is lipid accumulation in smooth muscle cells of the vascular wall. The glucose- and mechano-sensitive transcriptional coactivator, myocardin-related transcription factor A (MRTF-A/MKL1) can promote lipid accumulation in cultured human smooth muscle cells and contribute to the formation of smooth muscle-derived foam cells. The purpose of this study was to determine if intact human blood vessels ex vivo can be used to evaluate lipid accumulation in the vascular wall, and if this process is dependent on MRTF and/or galectin-3/LGALS3. Galectin-3 is an early marker of smooth muscle transdifferentiation and a potential mediator for foam cell formation and atherosclerosis. APPROACH AND RESULTS: Human mammary arteries and saphenous veins were exposed to altered cholesterol and glucose levels in an organ culture model. Accumulation of lipids, quantified by Oil Red O, was increased by cholesterol loading and elevated glucose concentrations. Pharmacological inhibition of MRTF with CCG-203971 decreased lipid accumulation, whereas adenoviral-mediated overexpression of MRTF-A had the opposite effect. Cholesterol-induced expression of galectin-3 was decreased after inhibition of MRTF. Importantly, pharmacological inhibition of galectin-3 with GB1107 reduced lipid accumulation in the vascular wall after cholesterol loading. CONCLUSION: Ex vivo organ culture of human arteries and veins can be used to evaluate lipid accumulation in the intact vascular wall, as well as adenoviral transduction and pharmacological inhibition. Although MRTF and galectin-3 may have beneficial, anti-inflammatory effects under certain circumstances, our results, which demonstrate a significant decrease in lipid accumulation, support further evaluation of MRTF- and galectin-3-inhibitors for therapeutic intervention against atherosclerotic vascular disease.

2.
Am J Physiol Cell Physiol ; 325(6): C1485-C1501, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37927241

ABSTRACT

A role of Yes1-associated transcriptional regulator (YAP) and WW domain-containing transcription regulator 1 (TAZ) in vascular and gastrointestinal contractility due to control of myocardin (Myocd) expression, which in turn activates contractile genes, has been demonstrated. Whether this transcriptional hierarchy applies to the urinary bladder is unclear. We found that YAP/TAZ are expressed in human detrusor myocytes and therefore exploited the Itga8-CreERT2 model for the deletion of YAP/TAZ. Recombination occurred in detrusor, and YAP/TAZ transcripts were reduced by >75%. Bladder weights were increased (by ≈22%), but histology demonstrated minimal changes in the detrusor, while arteries in the mucosa were inflamed. Real-time quantitative reverse transcription PCR (RT-qPCR) using the detrusor demonstrated reductions of Myocd (-79 ± 18%) and serum response factor (Srf) along with contractile genes. In addition, the cholinergic receptor muscarinic 2 (Chrm2) and Chrm3 were suppressed (-80 ± 23% and -80 ± 10%), whereas minute increases of Il1b and Il6 were seen. Unlike YAP/TAZ-deficient arteries, SRY (sex-determining region Y)-box 9 (Sox9) did not increase, and no chondrogenic differentiation was apparent. Reductions of smooth muscle myosin heavy chain 11 (Myh11), myosin light-chain kinase gene (Mylk), and Chrm3 were seen at the protein level. Beyond restraining the smooth muscle cell (SMC) program of gene expression, YAP/TAZ depletion silenced SMC-specific splicing, including exon 2a of Myocd. Reduced contractile differentiation was associated with weaker contraction in response to myosin phosphatase inhibition (-36%) and muscarinic activation (reduced by 53% at 0.3 µM carbachol). Finally, short-term overexpression of constitutively active YAP in human embryonic kidney 293 (HEK293) cells increased myocardin (greater than eightfold) along with archetypal target genes, but contractile genes were unaffected or reduced. YAP and TAZ thus regulate myocardin expression in the detrusor, and this is important for SMC differentiation and splicing as well as for contractility.NEW & NOTEWORTHY This study addresses the hypothesis that YAP and TAZ have an overarching role in the transcriptional hierarchy in the smooth muscle of the urinary bladder by controlling myocardin expression. Using smooth muscle-specific and inducible deletion of YAP and TAZ in adult mice, we find that YAP and TAZ control myocardin expression, contractile differentiation, smooth muscle-specific splicing, and bladder contractility. These effects are largely independent of inflammation and chondrogenic differentiation.


Subject(s)
Intracellular Signaling Peptides and Proteins , Urinary Bladder , Adult , Mice , Humans , Animals , HEK293 Cells , Cell Differentiation/genetics , Inflammation , Cholinergic Agents
3.
Microcirculation ; : e12838, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38011540

ABSTRACT

Cells have an incredible ability to physically interact with neighboring cells and their environment. They can detect and respond to mechanical forces by converting mechanical stimuli into biochemical signals in a process known as mechanotransduction. This is a key process for the adaption of vascular smooth muscle and endothelial cells to altered flow and pressure conditions. Mechanical stimuli, referring to a physical force exerted on cells, are primarily sensed by transmembrane proteins and the actin cytoskeleton, which initiate a cascade of intracellular events, including the activation of signaling pathways, ion channels, and transcriptional regulators. Recent work has highlighted an important role of the transcriptional coactivators YAP/TAZ for mechanotransduction in vascular cells. Interestingly, the activity of YAP/TAZ decreases with age, providing a potential mechanism for the detrimental effects of aging in the vascular wall. In this review, we summarize the current knowledge on the functional role of YAP and TAZ in vascular endothelial and smooth muscle cells for mechanotransduction in homeostasis and disease. In particular, the review is focused on in vivo observations from conditional knockout (KO) models of YAP/TAZ and the potential implications these studies may have for our understanding of vascular disease development.

4.
JCI Insight ; 8(17)2023 09 08.
Article in English | MEDLINE | ID: mdl-37561588

ABSTRACT

Inadequate adaption to mechanical forces, including blood pressure, contributes to development of arterial aneurysms. Recent studies have pointed to a mechanoprotective role of YAP and TAZ in vascular smooth muscle cells (SMCs). Here, we identified reduced expression of YAP1 in human aortic aneurysms. Vascular SMC-specific knockouts (KOs) of YAP/TAZ were thus generated using the integrin α8-Cre (Itga8-Cre) mouse model (i8-YT-KO). i8-YT-KO mice spontaneously developed aneurysms in the abdominal aorta within 2 weeks of KO induction and in smaller arteries at later times. The vascular specificity of Itga8-Cre circumvented gastrointestinal effects. Aortic aneurysms were characterized by elastin disarray, SMC apoptosis, and accumulation of proteoglycans and immune cell populations. RNA sequencing, proteomics, and myography demonstrated decreased contractile differentiation of SMCs and impaired vascular contractility. This associated with partial loss of myocardin expression, reduced blood pressure, and edema. Mediators in the inflammatory cGAS/STING pathway were increased. A sizeable increase in SOX9, along with several direct target genes, including aggrecan (Acan), contributed to proteoglycan accumulation. This was the earliest detectable change, occurring 3 days after KO induction and before the proinflammatory transition. In conclusion, Itga8-Cre deletion of YAP and TAZ represents a rapid and spontaneous aneurysm model that recapitulates features of human abdominal aortic aneurysms.


Subject(s)
Aortic Aneurysm, Abdominal , Aortic Aneurysm , Animals , Humans , Mice , Aorta, Abdominal , Aortic Aneurysm/genetics , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/metabolism , Disease Models, Animal , Muscle, Smooth, Vascular/metabolism
5.
Front Physiol ; 13: 1054819, 2022.
Article in English | MEDLINE | ID: mdl-36523548

ABSTRACT

Vascular smooth muscle cell plasticity plays a pivotal role in the pathophysiology of vascular diseases. Despite compelling evidence demonstrating the importance of transcription factor GATA6 in vascular smooth muscle, the functional role of GATA6 remains poorly understood. The aim of this study was to elucidate the role of GATA6 on cell migration and to gain insight into GATA6-sensitive genes in smooth muscle. We found that overexpression of GATA6 promotes migration of human coronary artery smooth muscle cells in vitro, and that silencing of GATA6 in smooth muscle cells resulted in reduced cellular motility. Furthermore, a complete microarray screen of GATA6-sensitive gene transcription resulted in 739 upregulated and 248 downregulated genes. Pathways enrichment analysis showed involvement of transforming growth factor beta (TGF-ß) signaling which was validated by measuring mRNA expression level of several members. Furthermore, master regulators prediction based on microarray data revealed several members of (mitogen activated protein kinase) MAPK pathway as a master regulators, reflecting involvement of MAPK pathway also. Our findings provide further insights into the functional role of GATA6 in vascular smooth muscle and suggest that targeting GATA6 may constitute as a new approach to inhibit vascular smooth muscle migration.

6.
Biochem Pharmacol ; 206: 115307, 2022 12.
Article in English | MEDLINE | ID: mdl-36270325

ABSTRACT

A ruptured arterial aneurysm, especially in the aorta, represents one of the most acute and mortal conditions encountered in clinical medicine. Population-based screening in elderly men, treatment of risk factors, such as hypertension, and endovascular or open repair of rupture-prone lesions, represent cornerstones in management. Surgical repair has a sizeable effect on life-expectancy, but medical therapy that retards aneurysm growth still represents a considerable and unmet clinical need. In the current review we survey recent findings implicating the mechano-responsive transcriptional co-activators YAP and TAZ in protection from aneurysm development. Arteries from mouse mutants that lack YAP and TAZ in vascular smooth muscle respond inadequately to mechanical stimulation, and they develop aneurysms characterized by elastin fragmentation, proteoglycan infiltration, and severe inflammation at breathtaking speed. This seems to be due, at least in part, to unscheduled activation of STING (stimulator of interferon genes), an arm of innate immunity that responds to double-stranded DNA in the cytoplasm. YAP and TAZ protect from STING activation by securing nuclear integrity. These novel insights suggest unanticipated medical therapies for sporadic and genetic aneurysms alike, involving inhibition of kinases in the Hippo pathway using small molecules, or inhibition of STING signaling itself. Translation of these novel findings into clinical therapies now represents an important priority.


Subject(s)
Adaptor Proteins, Signal Transducing , Aneurysm , Mice , Animals , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Phosphoproteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Cell Proliferation , YAP-Signaling Proteins , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Transcription Factors/genetics , Transcription Factors/metabolism , Muscle, Smooth, Vascular/metabolism , Inflammation
7.
Arterioscler Thromb Vasc Biol ; 42(4): 428-443, 2022 04.
Article in English | MEDLINE | ID: mdl-35196875

ABSTRACT

BACKGROUND: Hypertension remains a major risk factor for cardiovascular diseases, but the underlying mechanisms are not well understood. We hypothesize that appropriate mechanotransduction and contractile function in vascular smooth muscle cells are crucial to maintain vascular wall integrity. The Hippo pathway effectors YAP (yes-associated protein 1) and TAZ (WW domain containing transcription regulator 1) have been identified as mechanosensitive transcriptional coactivators. However, their role in vascular smooth muscle cell mechanotransduction has not been investigated in vivo. METHODS: We performed physiological and molecular analyses utilizing an inducible smooth muscle-specific YAP/TAZ knockout mouse model. RESULTS: Arteries lacking YAP/TAZ have reduced agonist-mediated contraction, decreased myogenic response, and attenuated stretch-induced transcriptional regulation of smooth muscle markers. Moreover, in established hypertension, YAP/TAZ knockout results in severe vascular lesions in small mesenteric arteries characterized by neointimal hyperplasia, elastin degradation, and adventitial thickening. CONCLUSIONS: This study demonstrates a protective role of YAP/TAZ against hypertensive vasculopathy.


Subject(s)
Adaptor Proteins, Signal Transducing , Hypertension , Muscle, Smooth, Vascular , YAP-Signaling Proteins , Adaptor Proteins, Signal Transducing/metabolism , Animals , Hypertension/metabolism , Mechanotransduction, Cellular , Mice , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Phosphoproteins/metabolism , YAP-Signaling Proteins/metabolism
8.
Mol Metab ; 53: 101306, 2021 11.
Article in English | MEDLINE | ID: mdl-34298200

ABSTRACT

OBJECTIVES: Restenosis after vessel angioplasty due to dedifferentiation of the vascular smooth muscle cells (VSMCs) limits the success of surgical treatment of vascular occlusions. Type 2 diabetes (T2DM) has a major impact on restenosis, with patients exhibiting more aggressive forms of vascular disease and poorer outcomes after surgery. Kv1.3 channels are critical players in VSMC proliferation. Kv1.3 blockers inhibit VSMCs MEK/ERK signalling and prevent vessel restenosis. We hypothesize that dysregulation of microRNAs (miR) play critical roles in adverse remodelling, contributing to Kv1.3 blockers efficacy in T2DM VSMCs. METHODS AND RESULTS: We used clinically relevant in vivo models of vascular risk factors (VRF) and vessels and VSMCs from T2DM patients. RESUKTS: Human T2DM vessels showed increased remodelling, and changes persisted in culture, with augmented VSMCs migration and proliferation. Moreover, there were downregulation of PI3K/AKT/mTOR and upregulation of MEK/ERK pathways, with increased miR-126 expression. The inhibitory effects of Kv1.3 blockers on remodelling were significantly enhanced in T2DM VSMCs and in VRF model. Finally, miR-126 overexpression confered "diabetic" phenotype to non-T2DM VSMCs by downregulating PI3K/AKT axis. CONCLUSIONS: miR-126 plays crucial roles in T2DM VSMC metabolic memory through activation of MEK/ERK pathway, enhancing the efficacy of Kv1.3 blockers in the prevention of restenosis in T2DM patients.


Subject(s)
Coronary Restenosis/metabolism , Diabetes Mellitus, Type 2/metabolism , Epigenesis, Genetic/genetics , Kv1.3 Potassium Channel/metabolism , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Aged , Animals , Coronary Restenosis/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Female , Humans , Kv1.3 Potassium Channel/antagonists & inhibitors , Male , Mice , MicroRNAs/genetics , Muscle, Smooth, Vascular/drug effects , Potassium Channel Blockers/pharmacology
9.
Vascul Pharmacol ; 138: 106837, 2021 06.
Article in English | MEDLINE | ID: mdl-33516965

ABSTRACT

OBJECTIVE: Smooth muscle cells contribute significantly to lipid-laden foam cells in atherosclerotic plaques. However, the underlying mechanisms transforming smooth muscle cells into foam cells are poorly understood. The purpose of this study was to gain insight into the molecular mechanisms regulating smooth muscle foam cell formation. APPROACH AND RESULTS: Using human coronary artery smooth muscle cells we found that the transcriptional co-activator MRTFA promotes lipid accumulation via several mechanisms, including direct transcriptional control of LDL receptor, enhanced fluid-phase pinocytosis and reduced lipid efflux. Inhibition of MRTF activity with CCG1423 and CCG203971 significantly reduced lipid accumulation. Furthermore, we demonstrate enhanced MRTFA expression in vascular remodeling of human vessels. CONCLUSIONS: This study demonstrates a novel role for MRTFA as an important regulator of lipid homeostasis in vascular smooth muscle cells. Thus, MRTFA could potentially be a new therapeutic target for inhibition of vascular lipid accumulation.


Subject(s)
Cell Transdifferentiation , Foam Cells/metabolism , Lipid Metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Trans-Activators/metabolism , Coronary Vessels/metabolism , Coronary Vessels/pathology , Foam Cells/pathology , HEK293 Cells , Humans , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Neointima , Pinocytosis , Receptors, LDL/genetics , Receptors, LDL/metabolism , Trans-Activators/genetics , Up-Regulation , Vascular Remodeling
10.
Cell Mol Gastroenterol Hepatol ; 11(2): 623-637, 2021.
Article in English | MEDLINE | ID: mdl-32992050

ABSTRACT

BACKGROUND & AIMS: YAP (Yap1) and TAZ (Wwtr1) are transcriptional co-activators and downstream effectors of the Hippo pathway, which play crucial roles in organ size control and cancer pathogenesis. Genetic deletion of YAP/TAZ has shown their critical importance for embryonic development of the heart, vasculature, and gastrointestinal mesenchyme. The aim of this study was to determine the functional role of YAP/TAZ in adult smooth muscle cells in vivo. METHODS: Because YAP and TAZ are mutually redundant, we used YAP/TAZ double-floxed mice crossed with mice that express tamoxifen-inducible CreERT2 recombinase driven by the smooth muscle-specific myosin heavy chain promoter. RESULTS: Double-knockout of YAP/TAZ in adult smooth muscle causes lethality within 2 weeks, mainly owing to colonic pseudo-obstruction, characterized by severe distension and fecal impaction. RNA sequencing in colon and urinary bladder showed that smooth muscle markers and muscarinic receptors were down-regulated in the YAP/TAZ knockout. The same transcripts also correlated with YAP/TAZ in the human colon. Myograph experiments showed reduced contractility to depolarization by potassium chloride and a nearly abolished muscarinic contraction and spontaneous activity in colon rings of YAP/TAZ knockout. CONCLUSIONS: YAP and TAZ in smooth muscle are guardians of colonic contractility and control expression of contractile proteins and muscarinic receptors. The knockout model has features of human chronic intestinal pseudo-obstruction and may be useful for studying this disease.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Colon/physiopathology , Colonic Pseudo-Obstruction/genetics , Muscle, Smooth/physiopathology , YAP-Signaling Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Colonic Pseudo-Obstruction/physiopathology , Disease Models, Animal , Female , Gastrointestinal Motility/genetics , Humans , Male , Mice , Mice, Knockout , Muscle Contraction/genetics , YAP-Signaling Proteins/metabolism
11.
Biochem Biophys Res Commun ; 529(1): 119-125, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32560812

ABSTRACT

Regulation of insulin signaling by microRNAs in smooth muscle cells may contribute to diabetic vascular disease. The two smooth muscle enriched miRNAs miR-143 and miR-145 have been reported to target mediators of insulin signaling in non-smooth muscle cells. In this study, we aimed to determine the importance of this regulation in vascular smooth muscle cells, where expression of miR-143/145 is much higher than in other cell types. Smooth muscle cells deficient of the miR-143/145 cluster were used, as well as smooth muscle cells transfected with mimics/inhibitors for either miR-143 or miR-145. We found that deletion of miR-143/145 in smooth muscle results in a dramatic upregulation IRS-1 expression and insulin signaling, and an increased insulin-induced glucose uptake. Furthermore, specific modulation of either miR-145 or miR-143 expression regulated specific targets (IRS-1, ORP8 and the IGF-1 receptor) in the insulin signaling pathway. Consequently, transient inhibition or overexpression of either miR-143 or miR-145 was sufficient to regulate insulin signaling in smooth muscle cells. In conclusion, the results of this study support an important role for both miR-143 and miR-145 in the regulation of insulin signaling and glucose uptake in vascular smooth muscle cells.


Subject(s)
Glucose/metabolism , Insulin Receptor Substrate Proteins/metabolism , Insulin/metabolism , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Animals , Biological Transport, Active , Cells, Cultured , Mice , Mice, Knockout , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Receptor, IGF Type 1/metabolism , Signal Transduction
12.
J Cell Physiol ; 235(10): 7370-7382, 2020 10.
Article in English | MEDLINE | ID: mdl-32039481

ABSTRACT

Smooth muscle cells (SMCs) are characterized by a high degree of phenotypic plasticity. Contractile differentiation is governed by myocardin-related transcription factors (MRTFs), in particular myocardin (MYOCD), and when their drive is lost, the cells become proliferative and synthetic with an expanded endoplasmic reticulum (ER). ER is responsible for assembly and folding of secreted proteins. When the load on the ER surpasses its capacity, three stress sensors (activating transcription factor 6 [ATF6], inositol-requiring enzyme 1α [IRE1α]/X-box binding protein 1 [XBP1], and PERK/ATF4) are activated to expand the ER and increase its folding capacity. This is referred to as the unfolded protein response (UPR). Here, we hypothesized that there is a reciprocal relationship between SMC differentiation and the UPR. Tight negative correlations between SMC markers (MYH11, MYOCD, KCNMB1, SYNPO2) and UPR markers (SDF2L1, CALR, MANF, PDIA4) were seen in microarray data sets from carotid arterial injury, partial bladder outlet obstruction, and bladder denervation, respectively. The UPR activators dithiothreitol (DTT) and tunicamycin (TN) activated the UPR and reduced MYOCD along with SMC markers in vitro. The IRE1α inhibitor 4µ8C counteracted the effect of DTT and TN on SMC markers and MYOCD expression. Transfection of active XBP1s was sufficient to reduce both MYOCD and the SMC markers. MRTFs also antagonized the UPR as indicated by reduced TN and DTT-mediated induction of CRELD2, MANF, PDIA4, and SDF2L1 following overexpression of MRTFs. The latter effect did not involve the newly identified MYOCD/SRF target MSRB3, or reduced production of either XBP1s or cleaved ATF6. The UPR thus counteracts SMC differentiation via the IRE1α/XBP1 arm of the UPR and MYOCD repression.


Subject(s)
Muscle, Smooth/metabolism , Nuclear Proteins/metabolism , Trans-Activators/metabolism , Transcription, Genetic/physiology , Unfolded Protein Response/physiology , Biomarkers/metabolism , Cell Differentiation/physiology , Cells, Cultured , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/physiology , Humans , Myocytes, Smooth Muscle/metabolism , Signal Transduction/physiology , Transcription Factors/metabolism , Urinary Bladder/metabolism
13.
Sci Rep ; 9(1): 12941, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31506540

ABSTRACT

Adipose tissue plays a major role in regulating whole-body insulin sensitivity and energy metabolism. To accommodate surplus energy, the tissue rapidly expands by increasing adipose cell size (hypertrophy) and cell number (hyperplasia). Previous studies have shown that enlarged, hypertrophic adipocytes are less responsive to insulin, and that adipocyte size could serve as a predictor for the development of type 2 diabetes. In the present study, we demonstrate that changes in adipocyte size correlate with a drastic remodeling of the actin cytoskeleton. Expansion of primary adipocytes following 2 weeks of high-fat diet (HFD)-feeding in C57BL6/J mice was associated with a drastic increase in filamentous (F)-actin as assessed by fluorescence microscopy, increased Rho-kinase activity, and changed expression of actin-regulating proteins, favoring actin polymerization. At the same time, increased cell size was associated with impaired insulin response, while the interaction between the cytoskeletal scaffolding protein IQGAP1 and insulin receptor substrate (IRS)-1 remained intact. Reversed feeding from HFD to chow restored cell size, insulin response, expression of actin-regulatory proteins and decreased the amount of F-actin filaments. Together, we report a drastic cytoskeletal remodeling during adipocyte expansion, a process which could contribute to deteriorating adipocyte function.


Subject(s)
Actin Cytoskeleton/pathology , Adipocytes/pathology , Adipogenesis , Obesity/pathology , Adipocytes/metabolism , Animals , Diet, High-Fat/adverse effects , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism
14.
Sci Rep ; 8(1): 13025, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30158653

ABSTRACT

Nexilin, encoded by the NEXN gene, is expressed in striated muscle and localizes to Z-discs, influencing mechanical stability. We examined Nexilin/NEXN in smooth muscle cells (SMCs), and addressed if Nexilin localizes to dense bodies and dense bands and whether it is regulated by actin-controlled coactivators from the MRTF (MYOCD, MKL1, MKL2) and YAP/TAZ (YAP1 and WWTR1) families. NEXN expression in SMCs was comparable to that in striated muscles. Immunofluorescence and immunoelectron microscopy suggested that Nexilin localizes to dense bodies and dense bands. Correlations at the mRNA level suggested that NEXN expression might be controlled by actin polymerization. Depolymerization of actin using Latrunculin B repressed the NEXN mRNA and protein in bladder and coronary artery SMCs. Overexpression and knockdown supported involvement of both YAP/TAZ and MRTFs in the transcriptional control of NEXN. YAP/TAZ and MRTFs appeared equally important in bladder SMCs, whereas MRTFs dominated in vascular SMCs. Expression of NEXN was moreover reduced in situations of SMC phenotypic modulation in vivo. The proximal promoter of NEXN conferred control by MRTF-A/MKL1 and MYOCD. NEXN silencing reduced actin polymerization and cell migration, as well as SMC marker expression. NEXN targeting by actin-controlled coactivators thus amplifies SMC differentiation through the actin cytoskeleton, probably via dense bodies and dense bands.


Subject(s)
Actins/metabolism , Microfilament Proteins/metabolism , Myocytes, Smooth Muscle/metabolism , Protein Multimerization , Adaptor Proteins, Signal Transducing/metabolism , Cell Differentiation , Cells, Cultured , Gene Expression Profiling , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Microscopy, Fluorescence , Microscopy, Immunoelectron , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , RNA, Messenger/analysis , Trans-Activators/metabolism , Transcription Factors/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins
15.
ACS Cent Sci ; 4(6): 760-767, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29974072

ABSTRACT

Tumors are phenotypically heterogeneous and include subpopulations of cancer cells with stemlike properties. The natural product salinomycin, a K+-selective ionophore, was recently found to exert selectivity against such cancer stem cells. This selective effect is thought to be due to inhibition of the Wnt signaling pathway, but the mechanistic basis remains unclear. Here, we develop a functionally competent fluorescent conjugate of salinomycin to investigate the molecular mechanism of this compound. By subcellular imaging, we demonstrate a rapid cellular uptake of the conjugate and accumulation in the endoplasmic reticulum (ER). This localization is connected to induction of Ca2+ release from the ER into the cytosol. Depletion of Ca2+ from the ER induces the unfolded protein response as shown by global mRNA analysis and Western blot analysis of proteins in the pathway. In particular, salinomycin-induced ER Ca2+ depletion up-regulates C/EBP homologous protein (CHOP), which inhibits Wnt signaling by down-regulating ß-catenin. The increased cytosolic Ca2+ also activates protein kinase C, which has been shown to inhibit Wnt signaling. These results reveal that salinomycin acts in the ER membrane of breast cancer cells to cause enhanced Ca2+ release into the cytosol, presumably by mediating a counter-flux of K+ ions. The clarified mechanistic picture highlights the importance of ion fluxes in the ER as an entry to inducing phenotypic effects and should facilitate rational development of cancer treatments.

16.
J Cell Physiol ; 233(9): 7195-7205, 2018 09.
Article in English | MEDLINE | ID: mdl-29574754

ABSTRACT

Diabetes is a major risk factor for cardiovascular disease and this is in part due to the effects of hyperglycemia on vascular smooth muscle cells. Small non-coding microRNAs are known to control smooth muscle phenotype and arterial contractility and are dysregulated in diabetes. The effect of microRNAs on smooth muscle differentiation is in part mediated by the transcription factor KLF4 but the role of this mechanism in diabetic vascular disease is not fully understood. Herein, we have investigated the importance of hyperglycemia and diabetes for the expression of KLF4 in vascular smooth muscle and the involvement of miRNAs in this regulation. Hyperglycemia down-regulated KLF4 in vascular smooth muscle cells and similar results were found in arteries of diabetic mice and patients. This correlated with a Foxa2-dependent up-regulation of miR-29c, which targeted KLF4 in vascular smooth muscle cells. Importantly, by preventing downregulation of KLF4, the induction of smooth muscle contractile protein markers by glucose was inhibited. In conclusion, miR-29 mediated inhibition of KLF4 in hyperglycemic conditions contributes to increased expression of contractile markers in vascular smooth muscle cells. Further studies are warranted to determine the therapeutic implications of miR-29 inhibition in diabetic vascular disease.


Subject(s)
Gene Expression Regulation/drug effects , Glucose/pharmacology , Kruppel-Like Transcription Factors/genetics , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Aged , Animals , Biomarkers/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/pathology , Hepatocyte Nuclear Factor 3-beta/metabolism , Humans , Hyperglycemia/genetics , Hyperglycemia/pathology , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Mice, Inbred C57BL , MicroRNAs/genetics , Muscle Contraction/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
17.
Arterioscler Thromb Vasc Biol ; 38(2): 414-424, 2018 02.
Article in English | MEDLINE | ID: mdl-29217510

ABSTRACT

OBJECTIVE: Pressure-induced myogenic tone is involved in autoregulation of local blood flow and confers protection against excessive pressure levels in small arteries and capillaries. Myogenic tone is dependent on smooth muscle microRNAs (miRNAs), but the identity of these miRNAs is unclear. Furthermore, the consequences of altered myogenic tone for hypertension-induced damage to small arteries are not well understood. APPROACH AND RESULTS: The importance of smooth muscle-enriched microRNAs, miR-143/145, for myogenic tone was evaluated in miR-143/145 knockout mice. Furthermore, hypertension-induced vascular injury was evaluated in mesenteric arteries in vivo after angiotensin II infusion. Myogenic tone was abolished in miR-143/145 knockout mesenteric arteries, whereas contraction in response to calyculin A and potassium chloride was reduced by ≈30%. Furthermore, myogenic responsiveness was potentiated by angiotensin II in wild-type but not in knockout mice. Angiotensin II administration in vivo elevated systemic blood pressure in both genotypes. Hypertensive knockout mice developed severe vascular lesions characterized by vascular inflammation, adventitial fibrosis, and neointimal hyperplasia in small mesenteric arteries. This was associated with depolymerization of actin filaments and fragmentation of the elastic laminae at the sites of vascular lesions. CONCLUSIONS: This study demonstrates that miR-143/145 expression is essential for myogenic responsiveness. During hypertension, loss of myogenic tone results in potentially damaging levels of mechanical stress and detrimental effects on small arteries. The results presented herein provide novel insights into the pathogenesis of vascular disease and emphasize the importance of controlling mechanical factors to maintain structural integrity of the vascular wall.


Subject(s)
Arterial Pressure , Hypertension/metabolism , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Vascular Remodeling , Vasoconstriction , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/pathology , Angiotensin II , Animals , Calcium Signaling , Cells, Cultured , Disease Models, Animal , Elastic Tissue/metabolism , Elastic Tissue/pathology , Female , Fibrosis , Gene Knockout Techniques , Hyperplasia , Hypertension/genetics , Hypertension/pathology , Hypertension/physiopathology , Male , Mesenteric Arteries/metabolism , Mesenteric Arteries/pathology , Mesenteric Arteries/physiopathology , Mice, Knockout , MicroRNAs/genetics , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology , Neointima , Vascular Resistance
18.
J Vasc Res ; 54(4): 246-256, 2017.
Article in English | MEDLINE | ID: mdl-28796998

ABSTRACT

BACKGROUND: Serotonin (5-HT) is considered to play a role in pulmonary arterial hypertension by regulating vascular remodeling and smooth muscle contractility. Here, arteries from mice with inducible and smooth muscle-specific deletion of Dicer were used to address mechanisms by which microRNAs control 5-HT-induced contraction. METHODS: Mice were used 5 weeks after Dicer deletion, and pulmonary artery contractility was analyzed by wire myography. RESULTS: No change was seen in right ventricular systolic pressure following dicer deletion, but systemic blood pressure was reduced. Enhanced 5-HT-induced contraction in Dicer KO pulmonary arteries was associated with increased 5-HT2A receptor mRNA expression whereas 5-HT1B and 5-HT2B receptor mRNAs were unchanged. Contraction by the 5-HT2A agonist TCB-2 was increased in Dicer KO as was the response to the 5-HT2B agonist BW723C86. Effects of Src and protein kinase C inhibition were similar in control and KO arteries, but the effect of inhibition of Rho kinase was reduced. We identified miR-30c as a potential candidate for 5-HT2A receptor regulation as it repressed 5-HT2A mRNA and protein. CONCLUSION: Our findings show that 5-HT receptor signaling in the arterial wall is subject to regulation by microRNAs and that this entails altered 5-HT2A receptor expression and signaling.


Subject(s)
MicroRNAs/metabolism , Pulmonary Artery/drug effects , Serotonin/pharmacology , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology , Animals , Cells, Cultured , DEAD-box RNA Helicases/deficiency , DEAD-box RNA Helicases/genetics , Dose-Response Relationship, Drug , Gene Expression Regulation , Genotype , Male , Mice, Knockout , MicroRNAs/genetics , Myography , Phenotype , Protein Kinase C/metabolism , Pulmonary Artery/metabolism , Receptor, Serotonin, 5-HT2A/drug effects , Receptor, Serotonin, 5-HT2A/genetics , Receptor, Serotonin, 5-HT2A/metabolism , Ribonuclease III/deficiency , Ribonuclease III/genetics , Signal Transduction/drug effects , Transfection , rho-Associated Kinases/metabolism , src-Family Kinases/metabolism
19.
Front Physiol ; 8: 569, 2017.
Article in English | MEDLINE | ID: mdl-28848449

ABSTRACT

Aortic aneurysms are defined as an irreversible increase in arterial diameter by more than 50% relative to the normal vessel diameter. The incidence of aneurysm rupture is about 10 in 100,000 persons per year and ruptured arterial aneurysms inevitably results in serious complications, which are fatal in about 40% of cases. There is also a hereditary component of the disease and dilation of the ascending thoracic aorta is often associated with congenital heart disease such as bicuspid aortic valves (BAV). Furthermore, specific mutations that have been linked to aneurysm affect polymerization of actin filaments. Polymerization of actin is important to maintain a contractile phenotype of smooth muscle cells enabling these cells to resist mechanical stress on the vascular wall caused by the blood pressure according to the law of Laplace. Interestingly, polymerization of actin also promotes smooth muscle specific gene expression via the transcriptional co-activator MRTF, which is translocated to the nucleus when released from monomeric actin. In addition to genes encoding for proteins involved in the contractile machinery, recent studies have revealed that several non-coding microRNAs (miRNAs) are regulated by this mechanism. The importance of these miRNAs for aneurysm development is only beginning to be understood. This review will summarize our current understanding about the influence of smooth muscle miRNAs and actin polymerization for the development of arterial aneurysms.

20.
Sci Rep ; 7(1): 1334, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28465505

ABSTRACT

Hypertension is a dominating risk factor for cardiovascular disease. To characterize the genomic response to hypertension, we administered vehicle or angiotensin II to mice and performed gene expression analyses. AngII treatment resulted in a robust increase in blood pressure and altered expression of 235 genes in the aorta, including Gucy1a3 and Gucy1b3 which encode subunits of soluble guanylyl cyclase (sGC). Western blotting and immunohistochemistry confirmed repression of sGC associated with curtailed relaxation via sGC activation. Analysis of transcription factor binding motifs in promoters of differentially expressed genes identified enrichment of motifs for RBPJ, a component of the Notch signaling pathway, and the Notch coactivators FRYL and MAML2 were reduced. Gain and loss of function experiments demonstrated that JAG/NOTCH signaling controls sGC expression together with MAML2 and FRYL. Reduced expression of sGC, correlating with differential expression of MAML2, in stroke prone and spontaneously hypertensive rats was also seen, and RNA-Seq data demonstrated correlations between JAG1, NOTCH3, MAML2 and FRYL and the sGC subunits GUCY1A3 and GUCY1B3 in human coronary artery. Notch signaling thus provides a constitutive drive on expression of the major nitric oxide receptor (GUCY1A3/GUCY1B3) in arteries from mice, rats, and humans, and this control mechanism is disturbed in hypertension.


Subject(s)
Aorta/metabolism , Hypertension/metabolism , Receptors, Notch/metabolism , Soluble Guanylyl Cyclase/metabolism , Angiotensin II/administration & dosage , Animals , Gene Expression , Humans , Hypertension/chemically induced , Hypertension/genetics , Mice, Inbred C57BL , RNA, Messenger/metabolism , Rats, Inbred WKY , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...