Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 223
Filter
1.
J Transl Med ; 22(1): 534, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835045

ABSTRACT

BACKGROUND: Macrophages are involved in tissue homeostasis, angiogenesis and immunomodulation. Proangiogenic and anti-inflammatory macrophages (regulatory macrophages, Mreg) can be differentiated in-vitro from CD14+ monocytes by using a defined cell culture medium and a stimulus of IFNγ. AIM OF THE STUDY: To scrutinize the potential impact of temporal IFNγ exposure on macrophage differentiation as such exposure may lead to the emergence of a distinct and novel macrophage subtype. METHODS: Differentiation of human CD14+ monocytes to Mreg was performed using a GMP compliant protocol and administration of IFNγ on day 6. Monocytes from the same donor were in parallel differentiated to MregIFNγ0 using the identical protocol but with administration of IFNγ on day 0. Cell characterization was performed using brightfield microscopy, automated and metabolic cell analysis, transmission electron microscopy, flow cytometry, qPCR and secretome profiling. RESULTS: Mreg and MregIFNγ0 showed no differences in cell size and volume. However, phenotypically MregIFNγ0 exhibited fewer intracellular vesicles/vacuoles but larger pseudopodia-like extensions. MregIFNγ0 revealed reduced expression of IDO and PD-L1 (P < 0.01 for both). They were positive for CD80, CD14, CD16 and CD38 (P < 0.0001vs. Mreg for all), while the majority of MregIFNγ0 did not express CD206, CD56, and CD103 on their cell surface (P < 0.01 vs. Mreg for all). In terms of their secretomes, MregIFNγ0 differed significantly from Mreg. MregIFNγ0 media exhibited reduced levels of ENA-78, Osteopontin and Serpin E1, while the amounts of MIG (CXCL9) and IP10 were increased. CONCLUSION: Exposing CD14+ monocytes to an alternatively timed IFNγ stimulation results in a novel macrophage subtype which possess additional M1-like features (MregIFNγ0). MregIFNγ0 may therefore have the potential to serve as cellular therapeutics for clinical applications beyond those covered by M2-like Mreg, including immunomodulation and tumor treatment.


Subject(s)
Cell Differentiation , Interferon-gamma , Macrophages , Phenotype , Humans , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Macrophages/metabolism , Macrophages/drug effects , Cell Differentiation/drug effects , Monocytes/metabolism , Monocytes/drug effects , Time Factors , Lipopolysaccharide Receptors/metabolism
2.
Article in English | MEDLINE | ID: mdl-38921055

ABSTRACT

OBJECTIVES: Current European guidelines for pediatric cardiopulmonary resuscitation (CPR) recommend the lower half of the sternum as the chest compression point (CP). In this study, we have used thoracic CT scans to evaluate recommended and optimal CP in relation to cardiac anatomy and structure. DESIGN: Analysis of routinely acquired thoracic CT scans acquired from 2000 to 2020. SETTING: Single-center pediatric department in a German University Hospital. PATIENTS: Imaging data were obtained from 290 patients of 3-16 years old. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We measured and analyzed 14 thoracic metrics in each thoracic CT scan. In 44 of 290 (15.2%) scans, the recommended CP did not match the level of the cardiac ventricles. Anatomically, the optimal CP was one rib or one vertebral body lower than the recommended CP, that is, the optimal CP was more caudal to the level of the body of the sternum in 67 of 290 (23.1%) scans. The recommended compression depth appeared reasonable in children younger than 12 years old. At 12 years old or older, the maximum compression depth of 6 cm is less than or equal to one-third of the thoracic depth. CONCLUSIONS: In this study of thoracic CT scans in children 3-16 years old, we have found that optimal CP for CPR appears to be more caudal than the recommended CP. Therefore, it seems reasonable to prefer to use the lower part of the sternum for CPR chest compressions. At 12 years old or older, a compression depth similar to that used in adults-6 cm limit-may be chosen.

3.
Chem Soc Rev ; 53(12): 6322-6344, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38726664

ABSTRACT

Triazole-derived N-heterocyclic carbenes, triazolylidenes (trz) have become an interesting alternative to the ubiquitous Arduengo-type imidazole-derived carbenes, in part because they are stronger donors, and in other parts due to their versatile synthesis through different types of click reactions. While the use of trz ligands has initially focused on their coordination to precious metals for catalytic applications, the recent past has seen a growing interest in their impact on first-row transition metals. Coordination of trz ligands to such 3d metals is more challenging due to the orbital mismatch between the carbene and the 3d metal center, which also affects the stability of such complexes. Here we summarize the strategies that have been employed so far to overcome these challenges and to prepare first-row transition metal complexes containing at least one trz ligand. Both properties and reactivities of these trz complexes are comprehensively compiled, with a focus on photophysical properties and, in particular, on the application of these complexes in homogeneous catalysis. The diversity of catalytic transformations entailed with these trz 3d metal complexes as well as the record-high performance in some of the reactions underpins the benefits imparted by trz ligands.

4.
Chemistry ; 30(38): e202400400, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38687878

ABSTRACT

N-heterocyclic imines such as pyridylidene amines impart high catalytic activity when coordinated to a transition metal, largely imposed by their electronic flexibility. Here, this donor flexibility has been applied for the first time to CAAC-based systems through the synthesis of CAAC-triazenes. These new ligands offer a larger π-conjugation that extends from the N-heterocyclic carbene through three nitrogens rather than just one, as observed in N-heterocyclic imines. We demonstrate the straightforward synthesis of three new CAAC-triazenes containing different substituents on the terminal triazene nitrogen. These compounds are remarkably stable up to 120 °C without loss of N2 as typically observed with similar triazenes. E-to-Z isomerization within the triazene is instigated by UV light and is partially reversible dependent on the triazene substituent. The quinoline-substituted CAAC-triazene 1-Q has been applied as an L,L'-type ligand in the synthesis of [PdCl2(1-Q)], [PdCl(Me)(1-Q)] and [Pd(Me)(H2O(1-Q)]+. E-to-Z ligand isomerization also occurs when coordinated to PdCl2, providing access to on-metal manipulation. The cationic complex [PdMe(H2O)(1-Q)]+ is a precatalyst for oligomerization of ethylene to form initially 2-butene and subsequently linear and branched C8-C12 products from butene activation. Moreover, isomerization of 1-hexene takes place efficiently with exceptionally low catalyst loading (10 ppm) and up to 74,000 turnover numbers.

5.
Chimia (Aarau) ; 78(4): 205-208, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38676610

ABSTRACT

N-heterocycles are key building blocks for many pharmaceutical products. An efficient and sustainable method for the synthesis of this class of compounds consists of the recently established intramolecular C-H amination reaction. Development of new iron-based catalysts for this transformation is of paramount importance. Herein, three major challenges in this field are addressed: the accessibility of the catalyst, the lack of mechanisticunderstanding, and the limited activity and robustness of the catalyst. These challenges are tackled by threedifferent catalysts. The first catalyst is the commercially available FeI2, that shows good activities, but is limitedto substrates with activated C-H bonds. The Fe(HMDS)2 catalyst is used to perfom in-depth mechanistic studies, revealing key intermediates of the C-H amination reaction. The third catalyst, featuring mesoionic carbene ligands, displays unprecedented activities and aminates various C-H bonds.

6.
Geburtshilfe Frauenheilkd ; 84(4): 346-356, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38618578

ABSTRACT

Background: Recent years have seen a considerable shift from male doctors to female doctors in the field of gynecology. Female doctors are traditionally more involved with planning and maintaining their family. For gynecology, this could be associated with a risk that research activities will decrease, particularly if results are published in scientific journals. Methods: In view of this shift, a comparative observational study was carried for 2022 in which 1306 publications were matched to 1786 female and male doctors reported on the websites of the 44 locations of university gynecology departments in Germany. In addition, the volume of publications issued between 2014 and 2022 was compared for Germany, France, the United Kingdom, and the United States. In Germany, the volume of publications in Gynecology was additionally compared with the publication outputs of the specialties Urology and Trauma Surgery. Results: Since 2014, the increase in the numbers of publications in the field of Gynecology in Germany was lower (225%) than that of the countries with which it was compared (238%/252%/260% for F/UK/USA). When Gynecology was compared with other medical specialties in Germany, the number of publications in Urology were found to have increased at a lower rate (196%) while the number of publications in the field of Trauma Surgery increased by more (286%) than that of Gynecology. At the start of 2023, the percentage of women who were working as doctors at the lowest hierarchical level (junior doctor) was 81%. The publication output per capita of female doctors working at lower levels in the medical hierarchy, i.e., working as junior doctors and senior physicians, was between 40% and 80% lower than that of male doctors working at the same level. However, female directors published as much as male directors did. In the lower hierarchy levels, men were up to 14% more likely to be without an academic title. Predictors for more extensive publication activities by young female and male doctors include the extent and quality of publications by doctors in senior positions, the presence of a comprehensive cancer center or an institute for human genetics at the location where the young doctors were working, and joint publications with foreign authors. Conclusion: For the German Society of Gynecology and Obstetrics, the results suggest a number of approaches to promote young researchers. The support provided to young female doctors is especially important as this should help to retain them as junior researchers over the long term.

7.
Health Econ Rev ; 14(1): 27, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607501

ABSTRACT

BACKGROUND: Based on the legal framework laid down in section 130b (9) of Book V of the German Social Code, various criteria are relevant for the negotiated price for new patented drugs in Germany. European reference prices (ERPs) are one criterion. The ERP is based on the ex-factory prices (EFPs) of the countries included in the European country basket. However, in some of these countries, the EFP is not published due to confidential wholesale margins. Wholesale margins must therefore be estimated and deducted from purchase prices. In this context literature-based estimates to date do not assume regressive margins with higher pharmaceutical prices. This assumption is questionable and can lead to systematically underestimated country prices, especially for high-priced drugs. Percentage wholesale margins in the majority of European countries develop to a comparable extent regressively with increasing prices. It should therefore be examined (1) whether statistical models can predict the margins of individual countries, in principle and especially for countries where margins are unknown and regressive trends are likely, and (2) to what extent the estimation of margins improves when regressive statistical models are used to estimate margins instead of cross-price averages published in the literature. METHODS: Qualitative preliminary research explores the basic wholesale pricing mechanisms in countries with confidential wholesale margins. Wholesale margins for reimbursable drugs were then modeled for regulated European countries. Estimation quality and impact of the model was compared to estimations based on average margins. RESULTS: In both regulated countries and in countries with confidential wholesale margins, percentage margins of wholesalers develop regressively as drug prices rise. Regressive courses of margins can be resiliently modeled for the regulated countries using a power distribution with significantly lower mean squared errors in a linear mixed model in comparison to literature-based estimations with country-specific cross-price averages. CONCLUSION: If there is reason to believe that margins are regressive, confidential wholesale margins are expected to be better estimated by the power function based on margins of regulated countries than by the published country-specific average margins, reducing significantly inaccurate effects on margin estimations of high-price drugs.

8.
ACS Appl Mater Interfaces ; 16(10): 12793-12804, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38422376

ABSTRACT

In this work, we investigate the growth of monoclinic ß-(InxGa1-x)2O3 alloys on top of (010) ß-Ga2O3 substrates via plasma-assisted molecular beam epitaxy. In particular, using different in situ (reflection high-energy electron diffraction) and ex situ (atomic force microscopy, X-ray diffraction, time-of-flight secondary ion mass spectrometry, and transmission electron microscopy) characterization techniques, we discuss (i) the growth parameters that allow for In incorporation and (ii) the obtainable structural quality of the deposited layers as a function of the alloy composition. In particular, we give experimental evidence of the possibility of coherently growing (010) ß-(InxGa1-x)2O3 layers on ß-Ga2O3 with good structural quality for x up to ≈ 0.1. Moreover, we show that the monoclinic structure of the underlying (010) ß-Ga2O3 substrate can be preserved in the ß-(InxGa1-x)2O3 layers for wider concentrations of In (x ≤ 0.19). Nonetheless, the formation of a large amount of structural defects, like unexpected (102̅) oriented twin domains and partial segregation of In is suggested for x > 0.1. Strain relaxes anisotropically, maintaining an elastically strained unit cell along the a* direction vs plastic relaxation along the c* direction. This study provides important guidelines for the low-end side tunability of the energy bandgap of ß-Ga2O3-based alloys and provides an estimate of its potential in increasing the confined carrier concentration of two-dimensional electron gases in ß-(InxGa1-x)2O3/(AlyGa1-y)2O3 heterostructures.

9.
Inorg Chem ; 63(4): 2072-2081, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38230574

ABSTRACT

Coordinatively unsaturated complexes are interesting from a fundamental level for their formally empty coordination site and, in particular, from a catalytic perspective as they provide opportunities for substrate binding and transformation. Here, we describe the synthesis of a novel underligated ruthenium complex [Ru(cym)(N,N')]+, 3, featuring an amide-functionalized pyridylidene amide (PYA) as the N,N'-bidentate coordinating ligand. In contrast to previously investigated underligated complexes, complex 3 offers potential for dynamic modifications, thanks to the flexible donor properties of the PYA ligand. Specifically, they allow both for stabilizing the formally underligated metal center in complex 3 through nitrogen π-donation and for facilitating through π-acidic bonding properties the coordination of a further ligand L to the ruthenium center to yield the formal 18 e- complexes [Ru(cym)(N,N')(L)]+ (4: L = P(OMe)3; 5: L = PPh3; 6: L = N-methylimidazole; 7: L = pyridine) and neutral complex [RuCl(cym)(N,N')] 8. Analysis by 1H NMR and UV-vis spectroscopies reveals an increasing Ru-L bond strength along the sequence pyridine <1-methylimidazole < PPh3 < P(OMe)3 with binding constants varying over 3 orders of magnitude with log(Keq) values between 2.8 and 5.7. The flexibility of the Ru(PYA) unit and the ensuing accessibility of saturated and unsaturated species with one and the same ligand are attractive from a fundamental point of view and also for catalytic applications, as catalytic transformations rely on the availability of transiently vacant coordination sites. Thus, while complex 3 does not form stable adducts with O-donors such as ketones or alcohols, it transiently binds these species, as evidenced by the considerable catalytic activity in the transfer hydrogenation of ketones. Notably, and as one of only a few catalysts, complex 3 is compatible with EtOH as a hydrogen source. Complex 3 shows excellent performance in the transfer hydrogenation of pyridyl-containing substrates, in agreement with the poor coordination strength of this functional group to the ruthenium center in 3.

10.
Redox Biol ; 69: 102979, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061206

ABSTRACT

BACKGROUND: Empagliflozin (EMPA) ameliorates reactive oxygen species (ROS) generation in human endothelial cells (ECs) exposed to 10 % stretch, but the underlying mechanisms are still unclear. Pathological stretch is supposed to stimulate protein kinase C (PKC) by increasing intracellular calcium (Ca2+), therefore activating nicotinamide adenine dinucleotide phosphate oxidase (NOX) and promoting ROS production in human ECs. We hypothesized that EMPA inhibits stretch-induced NOX activation and ROS generation through preventing PKC activation. METHODS: Human coronary artery endothelial cells (HCAECs) were pre-incubated for 2 h before exposure to cyclic stretch (5 % or 10 %) with either vehicle, EMPA or the PKC inhibitor LY-333531 or PKC siRNA. PKC activity, NOX activity and ROS production were detected after 24 h. Furthermore, the Ca2+ chelator BAPTA-AM, NCX inhibitor ORM-10962 or NCX siRNA, sodium/potassium pump inhibitor ouabain and sodium hydrogen exchanger (NHE) inhibitor cariporide were applied to explore the involvement of the NHE/Na+/NCX/Ca2+ in the ROS inhibitory capacity of EMPA. RESULTS: Compared to 5 % stretch, 10 % significantly increased PKC activity, which was reduced by EMPA and PKC inhibitor LY-333531. EMPA and LY-333531 showed a similar inhibitory capacity on NOX activity and ROS generation induced by 10 % stretch, which was not augmented by combined treatment with both drugs. PKC-ß knockdown inhibits the NOX activation induced by Ca2+ and 10 % stretch. BAPTA, pharmacologic or genetic NCX inhibition and cariporide reduced Ca2+ in static HCAECs and prevented the activation of PKC and NOX in 10%-stretched cells. Ouabain increased ROS generation in cells exposed to 5 % stretch. CONCLUSION: EMPA reduced NOX activity via attenuation of the NHE/Na+/NCX/Ca2+/PKC axis, leading to less ROS generation in HCAECs exposed to 10 % stretch.


Subject(s)
Benzhydryl Compounds , Coronary Vessels , Endothelial Cells , Glucosides , Guanidines , Indoles , Maleimides , Sulfones , Humans , Endothelial Cells/metabolism , Reactive Oxygen Species/metabolism , Coronary Vessels/metabolism , Protein Kinase C/metabolism , Ouabain/metabolism , Oxidative Stress , Sodium-Hydrogen Exchangers/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
11.
Chemistry ; 30(4): e202303410, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-37916523

ABSTRACT

Catalytic C-N bond formation by direct activation of C-H bonds offers wide synthetic potential. En route to C-H amination, complexes with organic azides are critical precursors towards the reactive nitrene intermediate. Despite their relevance, α-N coordinated organoazide complexes are scarce in general, and elusive with iron, although iron complexes are by far the most active catalysts for C-H amination with organoazides. Herein, we report the synthesis of a stable iron α-N coordinated organoazide complex from [Fe(N(SiMe3 )2 )2 ] and AdN3 (Ad=1-adamantyl) and its crystallographic, IR, NMR and zero-field 57 Fe Mössbauer spectroscopic characterization. These analyses revealed that the organoazide is in fast equilibrium between the free and coordinated state (Keq =62). Photo-crystallography experiments showed gradual dissociation of N2 , which imparted an Fe-N bond shortening and correspond to structural snapshots of the formation of an iron imido/nitrene complex. Reactivity of the organoazide complex in solution showed complete loss of N2 , and subsequent formation of a C-H aminated product via nitrene insertion into a C-H bond of the N(SiMe3 )2 ligand. Monitoring this reaction by 1 H NMR spectroscopy indicates the transient formation of the imido/nitrene intermediate, which was supported by Mössbauer spectroscopy in frozen solution.

12.
Microbiol Resour Announc ; 12(12): e0046023, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37943043

ABSTRACT

Cyanobium and Synechococcus are prominent, globally distributed cyanobacteria genera with ecological significance. Here, we report the genomes of the marine Synechococcus sp. CCMP836 and two strains of Cyanobium (CZS25K and CZS48M) along with the genomes of 17 co-occurring proteobacteria. These genomes will improve the strain-specific ecological positions.

13.
Catal Sci Technol ; 13(19): 5625-5631, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-38013841

ABSTRACT

A new ruthenium complex containing a pyridylidene amine-based NNN ligand was developed as a catalyst precursor for formic acid dehydrogenation, which, as a rare example, does not require basic additives to display high activity (TOF ∼10 000 h-1). Conveniently, the complex is air-stable, but sensitive to light. Mechanistic investigations using UV-vis and NMR spectroscopic monitoring correlated with gas evolution profiles indicate rapid and reversible protonation of the central nitrogen of the NNN ligand as key step of catalyst activation, followed by an associative step for formic acid dehydrogenation.

14.
Dalton Trans ; 52(45): 16688-16697, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37882141

ABSTRACT

Palladium-catalyzed cross-coupling chemistry and in particular ketone α-arylation has been relying on a rather narrow range of supporting ligands with almost no alternatives to phosphines and N-heterocyclic carbenes. Here we introduce a class of well-defined palladium(II) complexes supported by N,N'-chelating and electronically flexible pyridylidene amide (PYA)-pyridyl ligands as catalysts for efficient α-arylation of ketones. Steric and electronic variations of the N,N'-bidentate ligand indicate that the introduction of an ortho-methyl group on the pyridinum heterocycle of the PYA ligand enhances the arylation rate and prevents catalyst deactivation, reaching turnover numbers up to 7300 and turnover frequencies of almost 10 000 h-1, which is similar to that of the best phosphine complexes known to date. Introducing a shielding xylyl substituent accelerates catalysis further, however at the expense of lower selectivity towards arylated ketones. Substrate scope investigations revealed that both electron-rich and -poor aryl bromides as well as a broad range of electronically and sterically modified ketones are efficiently converted, including aliphatic ketones. Mechanistic investigations using Hammett and Eyring analyses indicated that both, oxidative addition and reductive elimination are relatively fast, presumably as a consequence of the electronic flexibility of the PYA ligand, while enolate coordination was identified as the turnover-limiting step.

15.
J Mol Med (Berl) ; 101(11): 1437-1448, 2023 11.
Article in English | MEDLINE | ID: mdl-37725101

ABSTRACT

Macrophages belong to the innate immune system, and we have recently shown that in vitro differentiated human regulatory macrophages (Mreg) release large extracellular vesicles (L-EVMreg) with an average size of 7.5 µm which regulate wound healing and angiogenesis in vitro. The aim of this study was to investigate whether L-EVMreg also affect the CD3/CD28-mediated activation of T-cells. Mreg were differentiated using blood monocytes and L-EVMreg were isolated from culture supernatants by differential centrifugation. Activation of human T-cells was induced by CD3/CD28-coated beads in the absence or presence of Mreg or different concentrations of L-EVMreg. Inhibition of T-cell activation was quantified by flow cytometry and antibodies directed against the T-cell marker granzyme B. Phosphatidylserine (PS) exposure on the surface of Mreg and L-EVMreg was analyzed by fluorescence microscopy. Incubation of human lymphocytes with CD3/CD28 beads resulted in an increase of cell size, cell granularity, and number of granzyme B-positive cells (P < 0.05) which is indicative of T-cell activation. The presence of Mreg (0.5 × 106 Mreg/ml) led to a reduction of T-cell activation (number of granzyme B-positive cells; P < 0.001), and a similar but less pronounced effect was also observed when incubating activated T-cells with L-EVMreg (P < 0.05 for 3.2 × 106 L-EVMreg/ml). A differential analysis of the effects of Mreg and L-EVMreg on CD4+ and CD8+ T-cells showed an inhibition of CD4+ T-cells by Mreg (P < 0.01) and L-EVMreg (P < 0.05 for 1.6 × 106 L-EVMreg/ml; P < 0.01 for 3.2 × 106 L-EVMreg/ml). A moderate inhibition of CD8+ T-cells was observed by Mreg (P < 0.05) and by L-EVMreg (P < 0.01 for 1.6 × 106 L-EVMreg/ml and 3.2 × 106 L-EVMreg/ml). PS was restricted to confined regions of the Mreg surface, while L-EVMreg showed strong signals for PS in the exoplasmic leaflet. L-EVMreg attenuate CD3/CD28-mediated activation of CD4+ and CD8+ T-cells. L-EVMreg may have clinical relevance, particularly in the treatment of diseases associated with increased T-cell activity. KEY MESSAGES: Mreg release large extracellular vesicles (L-EVMreg) with an average size of 7.5 µm L-EVMreg exhibit phosphatidylserine positivity L-EVMreg suppress CD4+ and CD8+ T-cells L-EVMreg hold clinical potential in T-cell-related diseases.


Subject(s)
CD28 Antigens , CD8-Positive T-Lymphocytes , Humans , Granzymes/pharmacology , Phosphatidylserines/pharmacology , Macrophages , Lymphocyte Activation , CD4-Positive T-Lymphocytes
16.
Front Microbiol ; 14: 1169958, 2023.
Article in English | MEDLINE | ID: mdl-37520365

ABSTRACT

Introduction: Biological soil crusts (biocrusts) are known as biological hotspots on undisturbed, nutrient-poor bare soil surfaces and until now, are mostly observed in (semi-) arid regions but are currently poorly understood in agricultural systems. This is a crucial knowledge gap because managed sites of mesic regions can quickly cover large areas. Thus, we addressed the questions (i) if biocrusts from agricultural sites of mesic regions also increase nutrients and microbial biomass as their (semi-) arid counterparts, and (ii) how microbial community assemblage in those biocrusts is influenced by disturbances like different fertilization and tillage regimes. Methods: We compared phototrophic biomass, nutrient concentrations as well as the abundance, diversity and co-occurrence of Archaea, Bacteria, and Fungi in biocrusts and bare soils at a site with low agricultural soil quality. Results and Discussion: Biocrusts built up significant quantities of phototrophic and microbial biomass and stored more nutrients compared to bare soils independent of the fertilizer applied and the tillage management. Surprisingly, particularly low abundant Actinobacteria were highly connected in the networks of biocrusts. In contrast, Cyanobacteria were rarely connected, which indicates reduced importance within the microbial community of the biocrusts. However, in bare soil networks, Cyanobacteria were the most connected bacterial group and, hence, might play a role in early biocrust formation due to their ability to, e.g., fix nitrogen and thus induce hotspot-like properties. The microbial community composition differed and network complexity was reduced by conventional tillage. Mineral and organic fertilizers led to networks that are more complex with a higher percentage of positive correlations favoring microbe-microbe interactions. Our study demonstrates that biocrusts represent a microbial hotspot on soil surfaces under agricultural use, which may have important implications for sustainable management of such soils in the future.

17.
Chemistry ; 29(47): e202301351, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37310888

ABSTRACT

The immobilization of copper-containing nitrite reductase (NiR) from Alcaligenes faecalis on functionalised multi-walled carbon nanotube (MWCNT) electrodes is reported. It is demonstrated that this immobilization is mainly driven by hydrophobic interactions, promoted by the modification of MWCNTs with adamantyl groups. Direct electrochemistry shows high bioelectrochemical reduction of nitrite at the redox potential of NiR with high current density of 1.41 mA cm-2 . Furthermore, the desymmetrization of the trimer upon immobilization induces an independent electrocatalytic behavior for each of the three enzyme subunits, corroborated by an electron-tunneling distance dependence.

18.
Dalton Trans ; 52(23): 7992-8002, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37223983

ABSTRACT

The chemistry of N-heterocyclic carbenes with Earth-abundant manganese has largely focused on low-valent systems for reductive catalysis. Here, we have decorated imidazole- and triazole-derived carbenes with phenol substituents to access higher-valent Mn(III) complexes [Mn(O,C,O)(acac)], where acac = acetylacetonato, and O,C,O = bis(phenolate)imidazolylidene (1) or bis(phenolate)triazolylidene (2). Both complexes catalyze the oxidation of alcohols in the presence of tBuOOH as terminal oxidant. Complex 2 is slightly more active than 1 (TOF up to 540 h-1vs. 500 h-1), yet significantly more robust towards deactivation. Secondary and primary alcohols are oxidized, the latter with high selectivity and essentially no overoxidation of the aldehyde product to carboxylic acids unless the reaction time is substantially extended. Mechanistic investigations using Hammett parameters, IR spectroscopy, isotope labelling experiments, and specific substrates and oxidants as probes support the formation of a manganese(V) oxo system as the active species and subsequent turnover-limiting hydrogen atom abstraction.

19.
Chem Sci ; 14(11): 2849-2859, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36937598

ABSTRACT

Formation of ubiquitous C-N bonds traditionally uses prefunctionalized carbon precursors. Recently, metal-catalyzed amination of unfunctionalized C-H bonds with azides has become an attractive and atom-economic strategy for C-N bond formation, though all catalysts contain sophisticated ligands. Here, we report Fe(HMDS)2 (HMDS = N(SiMe3)2 -) as an easy-to-prepare catalyst for intramolecular C-H amination. The catalyst shows unprecedented turnover frequencies (110 h-1 vs. 70 h-1 reported to date) and requires no additives. Amination is successful for benzylic and aliphatic C-H bonds (>80% yield) and occurs even at room temperature. The simplicity of the catalyst enabled for the first time comprehensive mechanistic investigations. Kinetic, stoichiometric, and computational studies unveiled the intimate steps of the C-H amination process, including the resting state of the catalyst and turnover-limiting N2 loss of the coordinated azide. The high reactivity of the iron imido intermediate is rationalized by its complex spin system revealing imidyl and nitrene character.

20.
Catal Sci Technol ; 13(4): 958-962, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36825222

ABSTRACT

Commercially available iron salts FeX2 are remarkably active catalysts for pyrrolidine formation from organic azides via direct C-H bond amination. With FeI2, amination is fast and selective, (<30 min for 80% yield at 2 mol% loading), TONs up to 370 are reached with just 0.1 mol% catalyst, different functional groups are tolerated, and a variety of C-H bonds were activated.

SELECTION OF CITATIONS
SEARCH DETAIL
...