Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(9): e20007, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809450

ABSTRACT

Dual-core yarns, containing two filaments within the core of the yarn, have gained increasing commercial and research interest recently, especially in denim manufacturing. The use of multi-components in dual-core yarns allows for tailoring the properties of the yarn and denim fabric. The type of filaments and fibers and their surface characteristics play a role in fiber-to-fiber cohesion within yarn structure. However, little has been reported regarding the effect of different filaments on the properties of dual-core yarns. The objective of this study was to investigate the effect of three different filaments, T400, polyester flat (PET flat) and polyester textured (PET textured) as well as two yarn structures, siro versus non-siro, on tensile, elastic and other properties of dual-core yarns at same twist level and linear density of the yarn. The results showed that the siro spun dual-core yarn containing T400 exhibited 25% higher tenacity compared with yarns containing other filaments. However, the plastic deformation of the yarn containing PET flat filament, having a higher initial modulus, was at a relatively lower level compared with T400 and PET textured. Overall, the siro yarn structure showed lower imperfections and higher tenacity compared with the non-siro yarn structure. The dual-core yarn containing T400 showed a higher level of moisture wicking compared with other filaments which can add to the comfort properties but a similar hairiness level. The findings of this study suggest that the use of a filament with a higher initial modulus can improve the stretch and recovery behavior of the dual-core yarns.

2.
Article in English | MEDLINE | ID: mdl-34574831

ABSTRACT

Monitoring the indoor microclimate in old buildings of cultural heritage and significance is a practice of great importance because of the importance of their identity for local communities and national consciousness. Most aged heritage buildings, especially those made of wood, develop an indoor microclimate conducive to the development of microorganisms. This study aims to analyze one wooden church dating back to the 1710s in Romania from the microclimatic perspective, i.e., temperature and relative humidity and the fungal load of the air and surfaces. One further aim was to determine if the internal microclimate of the monument is favorable for the health of parishioners and visitors, as well as for the integrity of the church itself. The research methodology involved monitoring of the microclimate for a period of nine weeks (November 2020-January 2021) and evaluating the fungal load in indoor air as well as on the surfaces. The results show a very high contamination of air and surfaces (>2000 CFU/m3). In terms of fungal contamination, Aspergillus spp. (two different species), Alternaria spp., Cladosporium spp., Mucor spp., Penicillium spp. (two different species) and Trichopyton spp. were the genera of fungi identified in the indoor wooden church air and Aspergillus spp., Cladosporium spp., Penicillium spp. (two different species) and Botrytis spp. on the surfaces (church walls and iconostasis). The results obtained reveal that the internal microclimate not only imposes a potential risk factor for the parishioners and visitors, but also for the preservation of the wooden church as a historical monument, which is facing a crisis of biodeterioration of its artwork.


Subject(s)
Air Pollution, Indoor , Air Microbiology , Air Pollution, Indoor/analysis , Alternaria , Environmental Monitoring , Fungi , Romania
SELECTION OF CITATIONS
SEARCH DETAIL