Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(9)2023 08 23.
Article in English | MEDLINE | ID: mdl-37766197

ABSTRACT

Since its discovery in early 1916, dengue fever, a common vector-borne illness in Brazil, has resulted in extensive urban outbreaks and poses a serious threat to the public's health. Understanding the dynamics of Dengue Virus (DENV) serotypes circulating in different regions of Brazil is essential for implementing effective disease control and prevention measures. In response to this urgent need, we conducted an on-site training program in genomic surveillance in collaboration with the Central Laboratory of Health and the Secretary of Health of the Mato Grosso do Sul state. This initiative resulted in the generation of 177 DENV genome sequences collected between May 2021 and May 2022, a period during which over 11,391 dengue fever cases were reported in the state. Through this approach, we were able to identify the co-circulation of two different dengue serotypes (DENV1 and DENV2) as well as the existence of diverse viral lineages within each genotype, suggesting that multiple introduction events of different viral strains occurred in the region. By integrating epidemiological data, our findings unveiled temporal fluctuations in the relative abundance of different serotypes throughout various epidemic seasons, highlighting the complex and changing dynamics of DENV transmission throughout time. These findings demonstrate the value of ongoing surveillance activities in tracking viral transmission patterns, monitoring viral evolution, and informing public health actions.


Subject(s)
Dengue , Public Health , Humans , Brazil/epidemiology , Genomics , Genotype , Dengue/epidemiology
2.
Nat Commun ; 14(1): 4413, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37479700

ABSTRACT

The emergence and reemergence of mosquito-borne diseases in Brazil such as yellow fever, zika, chikungunya, and dengue have had serious impacts on public health. Concerns have been raised due to the rapid dissemination of the chikungunya virus across the country since its first detection in 2014 in Northeast Brazil. In this work, we carried out on-site training activities in genomic surveillance in partnership with the National Network of Public Health Laboratories that have led to the generation of 422 chikungunya virus genomes from 12 Brazilian states over the past two years (2021-2022), a period that has seen more than 312 thousand chikungunya fever cases reported in the country. These genomes increased the amount of available data and allowed a more comprehensive characterization of the dispersal dynamics of the chikungunya virus East-Central-South-African lineage in Brazil. Tree branching patterns revealed the emergence and expansion of two distinct subclades. Phylogeographic analysis indicated that the northeast region has been the leading hub of virus spread towards other regions. Increased frequency of C > T transitions among the new genomes suggested that host restriction factors from the immune system such as ADAR and AID/APOBEC deaminases might be driving the genetic diversity of the chikungunya virus in Brazil.


Subject(s)
Chikungunya Fever , Chikungunya virus , Yellow Fever , Zika Virus Infection , Zika Virus , Animals , Humans , Chikungunya virus/genetics , Brazil/epidemiology , Chikungunya Fever/epidemiology , Nucleotides
3.
medRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37034611

ABSTRACT

The emergence and reemergence of mosquito-borne diseases in Brazil such as Yellow Fever, Zika, Chikungunya, and Dengue have had serious impacts on public health. Concerns have been raised due to the rapid dissemination of the chikungunya virus (CHIKV) across the country since its first detection in 2014 in Northeast Brazil. Faced with this scenario, on-site training activities in genomic surveillance carried out in partnership with the National Network of Public Health Laboratories have led to the generation of 422 CHIKV genomes from 12 Brazilian states over the past two years (2021-2022), a period that has seen more than 312 thousand chikungunya fever cases reported in the country. These new genomes increased the amount of available data and allowed a more comprehensive characterization of the dispersion dynamics of the CHIKV East-Central-South-African (ECSA) lineage in Brazil. Tree branching patterns revealed the emergence and expansion of two distinct subclades. Phylogeographic analysis indicated that the northeast region has been the leading hub of virus spread towards other regions. Increased frequency of C>T transitions among the new genomes suggested that host restriction factors from the immune system such as ADAR and AID/APOBEC deaminases might be driving CHIKV ECSA lineage genetic diversity in Brazil.

4.
Viruses ; 16(1)2023 12 22.
Article in English | MEDLINE | ID: mdl-38257724

ABSTRACT

The emergence and continued geographic expansion of arboviruses and the growing number of infected people have highlighted the need to develop and improve multiplex methods for rapid and specific detection of pathogens. Sequencing technologies are promising tools that can help in the laboratory diagnosis of conditions that share common symptoms, such as pathologies caused by emerging arboviruses. In this study, we integrated nanopore sequencing and the advantages of reverse transcription polymerase chain reaction (RT-PCR) to develop a multiplex RT-PCR protocol for the detection of Chikungunya virus (CHIKV) and several orthoflaviviruses (such as dengue (Orthoflavivirus dengue), Zika (Orthoflavivirus zikaense), yellow fever (Orthoflavivirus flavi), and West Nile (Orthoflavivirus nilense) viruses) in a single reaction, which provides data for sequence-based differentiation of arbovirus lineages.


Subject(s)
Arboviruses , Chikungunya virus , Dengue , Nanopore Sequencing , Zika Virus Infection , Zika Virus , Humans , Arboviruses/genetics , Chikungunya virus/genetics , Multiplex Polymerase Chain Reaction , Zika Virus/genetics
5.
Infect Genet Evol ; 91: 104785, 2021 07.
Article in English | MEDLINE | ID: mdl-33652117

ABSTRACT

Autochthonous Zika virus (ZIKV) transmission in Brazil was first identified in April 2015 in Brazil, with the first ZIKV-associated microcephaly cases detected in October 2015. Despite efforts on understanding ZIKV transmission in Brazil, little is known about the virus epidemiology and genetic diversity in Minas Gerais (MG), the second most populous state in the country. We report molecular and genomic findings from the main public health laboratory in MG. Until January 2020, 26,817 ZIKV suspected infections and 86 congenital syndrome cases were reported in MG state. We tested 8552 ZIKV and microcephaly suspected cases. Ten genomes were generated on-site directly from clinical samples. A total of 1723 confirmed cases were detected in Minas Gerais, with two main epidemic waves; the first and larger epidemic wave peaked in March 2016, with the second smaller wave that peaked in March 2017. Dated molecular clock analysis revealed that multiple introductions occurred in Minas Gerais between 2014 and 2015, suggesting that the virus was circulating unnoticed for at least 16 months before the first confirmed laboratory case that we retrospectively identified in December 2015. Our findings highlight the importance of continued genomic surveillance strategies combined with traditional epidemiology to assist public health laboratories in monitoring and understanding the diversity of circulating arboviruses, which might help attenuate the public health impact of infectious diseases.


Subject(s)
Microcephaly/epidemiology , Zika Virus Infection/epidemiology , Zika Virus/genetics , Adolescent , Adult , Aged , Brazil/epidemiology , Child , Child, Preschool , Female , Humans , Incidence , Infant , Infant, Newborn , Male , Microcephaly/virology , Middle Aged , Retrospective Studies , Young Adult , Zika Virus Infection/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...