Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 7174, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36418309

ABSTRACT

Staphylococcus aureus is increasingly recognized as a facultative intracellular pathogen, although the significance and pervasiveness of its intracellular lifestyle remain controversial. Here, we applied fluorescence microscopy-based infection assays and automated image analysis to profile the interaction of 191 S. aureus isolates from patients with bone/joint infections, bacteremia, and infective endocarditis, with four host cell types, at five times post-infection. This multiparametric analysis revealed that almost all isolates are internalized and that a large fraction replicate and persist within host cells, presenting distinct infection profiles in non-professional vs. professional phagocytes. Phenotypic clustering highlighted interesting sub-groups, including one comprising isolates exhibiting high intracellular replication and inducing delayed host death in vitro and in vivo. These isolates are deficient for the cysteine protease staphopain A. This study establishes S. aureus intracellular lifestyle as a prevalent feature of infection, with potential implications for the effective treatment of staphylococcal infections.


Subject(s)
Bacteremia , Staphylococcal Infections , Humans , Staphylococcus aureus , Microscopy , Life Style
2.
Cell Microbiol ; 23(4): e13295, 2021 04.
Article in English | MEDLINE | ID: mdl-33222354

ABSTRACT

Infection by Trypanosoma cruzi, the protozoan parasite that causes Chagas disease, depends on reactive oxygen species (ROS), which has been described to induce parasite proliferation in mammalian host cells. It is unknown how the parasite manages to increase host ROS levels. Here, we found that intracellular T. cruzi forms release in the host cytosol its major cyclophilin of 19 kDa (TcCyp19). Parasites depleted of TcCyp19 by using CRISPR/Cas9 gene replacement proliferate inefficiently and fail to increase ROS, compared to wild type parasites or parasites with restored TcCyp19 gene expression. Expression of TcCyp19 in L6 rat myoblast increased ROS levels and restored the proliferation of TcCyp19 depleted parasites. These events could also be inhibited by cyclosporin A, (a cyclophilin inhibitor), and by polyethylene glycol-linked to antioxidant enzymes. TcCyp19 was found more concentrated in the membrane leading edges of the host cells in regions that also accumulate phosphorylated p47phox , as observed to the endogenous cyclophilin A, suggesting some mechanisms involved with the translocation process of the regulatory subunit p47phox in the activation of the NADPH oxidase enzymatic complex. We concluded that cyclophilin released in the host cell cytosol by T. cruzi mediates the increase of ROS, required to boost parasite proliferation in mammalian hosts.


Subject(s)
Cyclophilins/metabolism , Cytosol/metabolism , Host-Parasite Interactions , Reactive Oxygen Species/metabolism , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/metabolism , Animals , Cyclophilins/biosynthesis , Cyclophilins/genetics , Cytosol/chemistry , Myoblasts/parasitology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Rats , Trypanosoma cruzi/genetics
3.
Trop Med Infect Dis ; 4(2)2019 May 17.
Article in English | MEDLINE | ID: mdl-31108888

ABSTRACT

Cell-based screening has become the major compound interrogation strategy in Chagas disease drug discovery. Several different cell lines have been deployed as host cells in screening assays. However, host cell characteristics and host-parasite interactions may play an important role when assessing anti-T. cruzi compound activity, ultimately impacting on hit discovery. To verify this hypothesis, four distinct mammalian cell lines (U2OS, THP-1, Vero and L6) were used as T. cruzi host cells in High Content Screening assays. Rates of infection varied greatly between different host cells. Susceptibility to benznidazole also varied, depending on the host cell and parasite strain. A library of 1,280 compounds was screened against the four different cell lines infected with T. cruzi, resulting in the selection of a total of 82 distinct compounds as hits. From these, only two hits were common to all four cell lines assays (2.4%) and 51 were exclusively selected from a single assay (62.2%). Infected U2OS cells were the most sensitive assay, as 55 compounds in total were identified as hits; infected THP-1 yielded the lowest hit rates, with only 16 hit compounds. Of the selected hits, compound FPL64176 presented selective anti-T. cruzi activity and could serve as a starting point for the discovery of new anti-chagasic drugs.

4.
Methods Mol Biol ; 1971: 279-288, 2019.
Article in English | MEDLINE | ID: mdl-30980310

ABSTRACT

High content analysis enables automated, robust, and unbiased evaluation of in vitro Leishmania infection. Here, we describe a protocol based on the infection of THP-1 macrophages with Leishmania promastigotes and the quantification of parasite load by high content analysis. The technique is capable of detecting and quantifying intracellular amastigotes, providing a multiparametric readout of the total number of cells, ratio of infected cells, total number of parasites, and number of parasites per infected cells. The technique can be used to quantitate infection of any Leishmania species in virtually all types of permissive host cells and can be applied to quantification of drug activity and studies of the Leishmania intracellular life cycle stage.


Subject(s)
Image Processing, Computer-Assisted , Leishmania/growth & development , Leishmaniasis/pathology , Life Cycle Stages , Macrophages/parasitology , Humans , Leishmania/cytology , Leishmaniasis/metabolism , Macrophages/metabolism , Macrophages/pathology , Parasite Load/methods , THP-1 Cells
5.
Eur J Med Chem ; 126: 1129-1135, 2017 Jan 27.
Article in English | MEDLINE | ID: mdl-28064141

ABSTRACT

Chalcones display a broad spectrum of pharmacological activities. Herein, a series of 2'-hydroxy methoxylated chalcones was synthesized and evaluated towards Trypanosoma brucei, Trypanosoma cruzi and Leishmania infantum. Among the synthesized library, compounds 1, 3, 4, 7 and 8 were the most potent and selective anti-T. brucei compounds (EC50 = 1.3-4.2 µM, selectivity index >10-fold). Compound 4 showed the best early-tox and antiparasitic profile. The pharmacokinetic studies of compound 4 in BALB/c mice using hydroxypropil-ß-cyclodextrins formulation showed a 7.5 times increase in oral bioavailability.


Subject(s)
Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Chalcones/chemistry , Chalcones/pharmacology , Animals , Antiparasitic Agents/pharmacokinetics , Antiparasitic Agents/toxicity , Cell Line, Tumor , Chalcones/pharmacokinetics , Chalcones/toxicity , Cyclodextrins/chemistry , Drug Carriers/chemistry , Mice , Solubility , Trypanosomatina/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...