Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 1939, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253585

ABSTRACT

The exploration of metal-insulator transitions to produce field-induced reversible resistive switching effects has been a longstanding pursuit in materials science. Although the resistive switching effect in strongly correlated oxides is often associated with the creation or annihilation of oxygen vacancies, the underlying mechanisms behind this phenomenon are complex and, in many cases, still not clear. This study focuses on the analysis of the superconducting performance of cuprate YBa2Cu3O7-δ (YBCO) devices switched to different resistive states through gate voltage pulses. The goal is to evaluate the effect of field-induced oxygen diffusion on the magnetic field and angular dependence of the critical current density and identify the role of induced defects in the switching performance. Transition electron microscopy measurements indicate that field-induced transition to high resistance states occurs through the generation of YBa2Cu4O7 (Y124) intergrowths with a large amount of oxygen vacancies, in agreement with the obtained critical current density dependences. These results have significant implications for better understanding the mechanisms of field-induced oxygen doping in cuprate superconductors and their role on the superconducting performance.

2.
Chem Mater ; 35(20): 8765, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37901144

ABSTRACT

[This corrects the article DOI: 10.1021/acs.chemmater.2c03831.].

3.
Chem Mater ; 35(9): 3513-3521, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37181670

ABSTRACT

The imperative need for highly performant and stable p-type transparent electrodes based on abundant metals is stimulating the research on perovskite oxide thin films. Moreover, exploring the preparation of these materials with the use of cost-efficient and scalable solution-based techniques is a promising approach to extract their full potential. Herein, we present the design of a chemical route, based on metal nitrate precursors, for the preparation of pure phase La0.75Sr0.25CrO3 (LSCO) thin films to be used as a p-type transparent conductive electrode. Different solution chemistries have been evaluated to ultimately obtain dense, epitaxial, and almost relaxed LSCO films. Optical characterization of the optimized LSCO films reveals promising high transparency with ∼67% transmittance while room temperature resistivity values are 1.4 Ω·cm. It is suggested that the presence of structural defects, i.e., antiphase boundaries and misfit dislocations, affects the electrical behavior of LSCO films. Monochromated electron energy loss spectroscopy allowed changes in the electronic structure in LSCO films to be determined, revealing the creation of Cr4+ and unoccupied states at the O 2p upon Sr-doping. This work offers a new venue to prepare and further investigate cost-effective functional perovskite oxides with potential to be used as p-type transparent conducting electrodes and be easily integrated in many oxide heterostructures.

4.
Proc Natl Acad Sci U S A ; 119(40): e2207766119, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36161921

ABSTRACT

We report on the nonlinear optical signatures of quantum phase transitions in the high-temperature superconductor YBCO, observed through high harmonic generation. While the linear optical response of the material is largely unchanged when cooling across the phase transitions, the nonlinear optical response sensitively imprints two critical points, one at the critical temperature of the cuprate with the exponential growth of the surface harmonic yield in the superconducting phase and another critical point, which marks the transition from strange metal to pseudogap phase. To reveal the underlying microscopic quantum dynamics, a strong-field quasi-Hubbard model was developed, which describes the measured optical response dependent on the formation of Cooper pairs. Further, the theory provides insight into the carrier scattering dynamics and allows us to differentiate between the superconducting, pseudogap, and strange metal phases. The direct connection between nonlinear optical response and microscopic dynamics provides a powerful methodology to study quantum phase transitions in correlated materials. Further implications are light wave control over intricate quantum phases, light-matter hybrids, and application for optical quantum computing.

5.
Materials (Basel) ; 13(2)2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31936337

ABSTRACT

Memristive devices are attracting a great attention for memory, logic, neural networks, and sensing applications due to their simple structure, high density integration, low-power consumption, and fast operation. In particular, multi-terminal structures controlled by active gates, able to process and manipulate information in parallel, would certainly provide novel concepts for neuromorphic systems. In this way, transistor-based synaptic devices may be designed, where the synaptic weight in the postsynaptic membrane is encoded in a source-drain channel and modified by presynaptic terminals (gates). In this work, we show the potential of reversible field-induced metal-insulator transition (MIT) in strongly correlated metallic oxides for the design of robust and flexible multi-terminal memristive transistor-like devices. We have studied different structures patterned on YBa2Cu3O7-δ films, which are able to display gate modulable non-volatile volume MIT, driven by field-induced oxygen diffusion within the system. The key advantage of these materials is the possibility to homogeneously tune the oxygen diffusion not only in a confined filament or interface, as observed in widely explored binary and complex oxides, but also in the whole material volume. Another important advantage of correlated oxides with respect to devices based on conducting filaments is the significant reduction of cycle-to-cycle and device-to-device variations. In this work, we show several device configurations in which the lateral conduction between a drain-source channel (synaptic weight) is effectively controlled by active gate-tunable volume resistance changes, thus providing the basis for the design of robust and flexible transistor-based artificial synapses.

SELECTION OF CITATIONS
SEARCH DETAIL
...