Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 15(6): 419, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879621

ABSTRACT

TRPV6 calcium channel is a prospective target in prostate cancer (PCa) since it is not expressed in healthy prostate while its expression increases during cancer progression. Despite the role of TRPV6 in PCa cell survival and apoptotic resistance has been already established, no reliable tool to target TRPV6 channel in vivo and thus to reduce tumor burden is known to date. Here we report the generation of mouse monoclonal antibody mAb82 raised against extracellular epitope of the pore region of the channel. mAb82 inhibited TRPV6 currents by 90% at 24 µg/ml in a dose-dependent manner while decreasing store-operated calcium entry to 56% at only 2.4 µg/ml. mAb82 decreased PCa survival rate in vitro by 71% at 12 µg/ml via inducing cell death through the apoptosis cascade via activation of the protease calpain, following bax activation, mitochondria enlargement, and loss of cristae, Cyt C release, pro-caspase 9 cleavage with the subsequent activation of caspases 3/7. In vivo, mice bearing either PC3Mtrpv6+/+ or PC3Mtrpv6-/-+pTRPV6 tumors were successfully treated with mAb82 at the dose as low as 100 µg/kg resulting in a significant reduction tumor growth by 31% and 90%, respectively. The survival rate was markedly improved by 3.5 times in mice treated with mAb82 in PC3Mtrpv6+/+ tumor group and completely restored in PC3Mtrpv6-/-+pTRPV6 tumor group. mAb82 showed a TRPV6-expression dependent organ distribution and virtually no toxicity in the same way as mAbAU1, a control antibody of the same Ig2a isotype. Overall, our data demonstrate for the first time the use of an anti-TRPV6 monoclonal antibody in vitro and in vivo in the treatment of the TRPV6-expressing PCa tumors.


Subject(s)
Antibodies, Monoclonal , Apoptosis , Calcium Channels , Prostatic Neoplasms , TRPV Cation Channels , Male , TRPV Cation Channels/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Apoptosis/drug effects , Humans , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Mice , Calcium Channels/metabolism , Cell Line, Tumor , Xenograft Model Antitumor Assays , Calpain/metabolism , Calcium/metabolism
2.
J Immunother Cancer ; 12(1)2024 01 30.
Article in English | MEDLINE | ID: mdl-38290768

ABSTRACT

INTRODUCTION: Triple-negative breast cancer (TNBC) prognosis is poor. Immunotherapies to enhance the antibody-induced natural killer (NK) cell antitumor activity are emerging for TNBC that is frequently immunogenic. The aspartic protease cathepsin D (cath-D), a tumor cell-associated extracellular protein with protumor activity and a poor prognosis marker in TNBC, is a prime target for antibody-based therapy to induce NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). This study investigated whether Fc-engineered anti-cath-D antibodies trigger ADCC, their impact on antitumor efficacy and tumor-infiltrating NK cells, and their relevance for combinatory therapy in TNBC. METHODS: Cath-D expression and localization in TNBC samples were evaluated by western blotting, immunofluorescence, and immunohistochemistry. The binding of human anti-cath-D F1M1 and Fc-engineered antibody variants, which enhance (F1M1-Fc+) or prevent (F1M1-Fc-) affinity for CD16a, to secreted human and murine cath-D was analyzed by ELISA, and to CD16a by surface plasmon resonance and flow cytometry. NK cell activation was investigated by flow cytometry, and ADCC by lactate dehydrogenase release. The antitumor efficacy of F1M1 Fc-variants was investigated using TNBC cell xenografts in nude mice. NK cell recruitment, activation, and cytotoxic activity were analyzed in MDA-MB-231 cell xenografts by immunophenotyping and RT-qPCR. NK cells were depleted using an anti-asialo GM1 antibody. F1M1-Fc+ antitumor effect was assessed in TNBC patient-derived xenografts (PDXs) and TNBC SUM159 cell xenografts, and in combination with paclitaxel or enzalutamide. RESULTS: Cath-D expression on the TNBC cell surface could be exploited to induce ADCC. F1M1 Fc-variants recognized human and mouse cath-D. F1M1-Fc+ activated NK cells in vitro and induced ADCC against TNBC cells and cancer-associated fibroblasts more efficiently than F1M1. F1M1-Fc- was ineffective. In the MDA-MB-231 cell xenograft model, F1M1-Fc+ displayed higher antitumor activity than F1M1, whereas F1M1-Fc- was less effective, reflecting the importance of Fc-dependent mechanisms in vivo. F1M1-Fc+ triggered tumor-infiltrating NK cell recruitment, activation and cytotoxic activity in MDA-MB-231 cell xenografts. NK cell depletion impaired F1M1-Fc+ antitumor activity, demonstrating their key role. F1M1-Fc+ inhibited growth of SUM159 cell xenografts and two TNBC PDXs. In combination therapy, F1M1-Fc+ improved paclitaxel and enzalutamide therapeutic efficacy without toxicity. CONCLUSIONS: F1M1-Fc+ is a promising immunotherapy for TNBC that could be combined with conventional regimens, including chemotherapy or antiandrogens.


Subject(s)
Antineoplastic Agents , Benzamides , Nitriles , Phenylthiohydantoin , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/pathology , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Cathepsin D , Mice, Nude , Cell Line, Tumor , Antibody-Dependent Cell Cytotoxicity , Antineoplastic Agents/therapeutic use , Killer Cells, Natural , Immunoglobulin Fc Fragments
3.
Br J Pharmacol ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030588

ABSTRACT

BACKGROUND AND PURPOSE: Triple-negative breast cancer (TNBC) has poorer outcomes than other breast cancers (BC), including HER2+ BC. Cathepsin D (CathD) is a poor prognosis marker overproduced by BC cells, hypersecreted in the tumour microenvironment with tumour-promoting activity. Here, we characterized the immunomodulatory activity of the anti-CathD antibody F1 and its improved Fab-aglycosylated version (F1M1) in immunocompetent mouse models of TNBC (C57BL/6 mice harbouring E0771 cell grafts) and HER2-amplified BC (BALB/c mice harbouring TUBO cell grafts). EXPERIMENTAL APPROACH: CathD expression was evaluated by western blotting and immunofluorescence, and antibody binding to CathD by ELISA. Antibody anti-tumour efficacy was investigated in mouse models. Immune cell recruitment and activation were assessed by immunohistochemistry, immunophenotyping, and RT-qPCR. KEY RESULTS: F1 and F1M1 antibodies remodelled the tumour immune landscape. Both antibodies promoted innate antitumour immunity by preventing the recruitment of immunosuppressive M2-polarized tumour-associated macrophages (TAMs) and by activating natural killer cells in the tumour microenvironment of both models. This translated into a reduction of T-cell exhaustion markers in the tumour microenvironment that could be locally supported by enhanced activation of anti-tumour antigen-presenting cell (M1-polarized TAMs and cDC1 cells) functions. Both antibodies inhibited tumour growth in the highly-immunogenic E0771 model, but only marginally in the immune-excluded TUBO model, indicating that anti-CathD immunotherapy is more relevant for BC with a high immune cell infiltrate, as often observed in TNBC. CONCLUSION AND IMPLICATION: Anti-CathD antibody-based therapy triggers the anti-tumour innate and adaptive immunity in preclinical models of BC and is a promising immunotherapy for immunogenic TNBC.

4.
Int J Cancer ; 152(6): 1243-1258, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36346290

ABSTRACT

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and lacks specific targeted therapeutic agents. The current mechanistic evidence from cell-based studies suggests that the matricellular protein SPARC has a tumor-promoting role in TNBC; however, data on the clinical relevance of SPARC expression/secretion by tumor and stromal cells in TNBC are limited. Here, we analyzed by immunohistochemistry the prognostic value of tumor and stromal cell SPARC expression in 148 patients with non-metastatic TNBC and long follow-up (median: 5.4 years). We also quantified PD-L1 and PD-1 expression. We detected SPARC expression in tumor cells (42.4%), cancer-associated fibroblasts (CAFs; 88.1%), tumor-associated macrophages (77.1%), endothelial cells (75.2%) and tumor-infiltrating lymphocytes (9.8%). Recurrence-free survival was significantly lower in patients with SPARC-expressing CAFs. Multivariate analysis showed that SPARC expression in CAFs was an independent prognostic factor. We also detected tumor and stromal cell SPARC expression in TNBC cytosols, and in patient-derived xenografts and cell lines. Furthermore, we analyzed publicly available single-cell mRNA sequencing data and found that in TNBC, SPARC is expressed by different CAF subpopulations, including myofibroblasts and inflammatory fibroblasts that are involved in tumor-related processes. We then showed that fibroblast-secreted SPARC had a tumor-promoting role by inhibiting TNBC cell adhesion and stimulating their motility and invasiveness. Overall, our study demonstrates that SPARC expression in CAFs is an independent prognostic marker of poor outcome in TNBC. Patients with SPARC-expressing CAFs could be eligible for anti-SPARC targeted therapy.


Subject(s)
Antineoplastic Agents , Cancer-Associated Fibroblasts , Triple Negative Breast Neoplasms , Humans , Prognosis , Triple Negative Breast Neoplasms/pathology , Cancer-Associated Fibroblasts/metabolism , Endothelial Cells/metabolism , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Osteonectin/genetics , Osteonectin/metabolism
5.
Front Immunol ; 12: 613438, 2021.
Article in English | MEDLINE | ID: mdl-34054795

ABSTRACT

Transforming growth factor-ß (TGF-ß) isoforms are secreted as inactive complexes formed through non-covalent interactions between bioactive TGF-ß entities and their N-terminal pro-domains called latency-associated peptides (LAP). Extracellular activation of latent TGF-ß within this complex is a crucial step in the regulation of TGF-ß activity for tissue homeostasis and immune cell function. We previously showed that the matrix glycoprotein Tenascin-X (TN-X) interacted with the small latent TGF-ß complex and triggered the activation of the latent cytokine into a bioactive TGF-ß. This activation most likely occurs through a conformational change within the latent TGF-ß complex and requires the C-terminal fibrinogen-like (FBG) domain of the glycoprotein. As the FBG-like domain is highly conserved among the Tenascin family members, we hypothesized that Tenascin-C (TN-C), Tenascin-R (TN-R) and Tenascin-W (TN-W) might share with TN-X the ability to regulate TGF-ß bioavailability through their C-terminal domain. Here, we demonstrate that purified recombinant full-length Tenascins associate with the small latent TGF-ß complex through their FBG-like domains. This association promotes activation of the latent cytokine and subsequent TGF-ß cell responses in mammary epithelial cells, such as cytostasis and epithelial-to-mesenchymal transition (EMT). Considering the pleiotropic role of TGF-ß in numerous physiological and pathological contexts, our data indicate a novel common function for the Tenascin family in the regulation of tissue homeostasis under healthy and pathological conditions.


Subject(s)
Tenascin/metabolism , Transforming Growth Factor beta/metabolism , Amino Acid Sequence , Animals , Cell Line , Epithelial Cells/metabolism , Homeostasis , Humans , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Protein Isoforms , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Signal Transduction , Smad Proteins/chemistry , Smad Proteins/metabolism , Structure-Activity Relationship , Tenascin/chemistry , Tenascin/genetics , Transforming Growth Factor beta/chemistry , Transforming Growth Factor beta/genetics
6.
Theranostics ; 11(13): 6173-6192, 2021.
Article in English | MEDLINE | ID: mdl-33995652

ABSTRACT

Rationale: Alternative therapeutic strategies based on tumor-specific molecular targets are urgently needed for triple-negative breast cancer (TNBC). The protease cathepsin D (cath-D) is a marker of poor prognosis in TNBC and a tumor-specific extracellular target for antibody-based therapy. The identification of cath-D substrates is crucial for the mechanistic understanding of its role in the TNBC microenvironment and future therapeutic developments. Methods: The cath-D substrate repertoire was investigated by N-Terminal Amine Isotopic Labeling of Substrates (TAILS)-based degradome analysis in a co-culture assay of TNBC cells and breast fibroblasts. Substrates were validated by amino-terminal oriented mass spectrometry of substrates (ATOMS). Cath-D and SPARC expression in TNBC was examined using an online transcriptomic survival analysis, tissue micro-arrays, TNBC cell lines, patient-derived xenografts (PDX), human TNBC samples, and mammary tumors from MMTV-PyMT Ctsd-/- knock-out mice. The biological role of SPARC and its fragments in TNBC were studied using immunohistochemistry and immunofluorescence analysis, gene expression knockdown, co-culture assays, western blot analysis, RT-quantitative PCR, adhesion assays, Transwell motility, trans-endothelial migration and invasion assays. Results: TAILS analysis showed that the matricellular protein SPARC is a substrate of extracellular cath-D. In vitro, cath-D induced limited proteolysis of SPARC C-terminal extracellular Ca2+ binding domain at acidic pH, leading to the production of SPARC fragments (34-, 27-, 16-, 9-, and 6-kDa). Similarly, cath-D secreted by TNBC cells cleaved fibroblast- and cancer cell-derived SPARC at the tumor pericellular acidic pH. SPARC cleavage also occurred in TNBC tumors. Among these fragments, only the 9-kDa SPARC fragment inhibited TNBC cell adhesion and spreading on fibronectin, and stimulated their migration, endothelial transmigration, and invasion. Conclusions: Our study establishes a novel crosstalk between proteases and matricellular proteins in the tumor microenvironment through limited SPARC proteolysis, revealing a novel targetable 9-kDa bioactive SPARC fragment for new TNBC treatments. Our study will pave the way for the development of strategies for targeting bioactive fragments from matricellular proteins in TNBC.


Subject(s)
Cathepsin D/metabolism , Extracellular Matrix/metabolism , Neoplasm Proteins/metabolism , Osteonectin/metabolism , Peptide Fragments/pharmacology , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment , Amino Acid Sequence , Animals , Binding Sites , Cathepsin D/deficiency , Cathepsin D/genetics , Cell Adhesion , Female , Fibroblasts , Gene Expression Regulation, Neoplastic , Humans , Hydrogen-Ion Concentration , Mammary Neoplasms, Experimental/enzymology , Mice , Mice, Knockout , Mice, Transgenic , Molecular Weight , Neoplasm Invasiveness , Neoplasm Proteins/genetics , Osteonectin/genetics , Peptide Fragments/metabolism , Protein Domains , Proteolysis , Substrate Specificity , Transendothelial and Transepithelial Migration , Triple Negative Breast Neoplasms/enzymology
7.
Sci Signal ; 13(639)2020 07 07.
Article in English | MEDLINE | ID: mdl-32636307

ABSTRACT

Bone morphogenetic protein 1 (BMP-1) is an important metalloproteinase that synchronizes growth factor activation with extracellular matrix assembly during morphogenesis and tissue repair. The mechanisms by which BMP-1 exerts these effects are highly context dependent. Because BMP-1 overexpression induces marked phenotypic changes in two human cell lines (HT1080 and 293-EBNA cells), we investigated how BMP-1 simultaneously affects cell-matrix interactions and growth factor activity in these cells. Increasing BMP-1 led to a loss of cell adhesion that depended on the matricellular glycoprotein thrombospondin-1 (TSP-1). BMP-1 cleaved TSP-1 between the VWFC/procollagen-like domain and the type 1 repeats that mediate several key TSP-1 functions. This cleavage induced the release of TSP-1 C-terminal domains from the extracellular matrix and abolished its previously described multisite cooperative interactions with heparan sulfate proteoglycans and CD36 on HT1080 cells. In addition, BMP-1-dependent proteolysis potentiated the TSP-1-mediated activation of latent transforming growth factor-ß (TGF-ß), leading to increased signaling through the canonical SMAD pathway. In primary human corneal stromal cells (keratocytes), endogenous BMP-1 cleaved TSP-1, and the addition of exogenous BMP-1 enhanced cleavage, but this had no substantial effect on cell adhesion. Instead, processed TSP-1 promoted the differentiation of keratocytes into myofibroblasts and stimulated production of the myofibroblast marker α-SMA, consistent with the presence of processed TSP-1 in human corneal scars. Our results indicate that BMP-1 can both trigger the disruption of cell adhesion and stimulate TGF-ß signaling in TSP-1-rich microenvironments, which has important potential consequences for wound healing and tumor progression.


Subject(s)
Bone Morphogenetic Protein 1/metabolism , Proteolysis , Thrombospondin 1/metabolism , Transforming Growth Factor beta/metabolism , Animals , Bone Morphogenetic Protein 1/genetics , Cell Adhesion , Cell Line, Tumor , Humans , Thrombospondin 1/genetics , Transforming Growth Factor beta/genetics , Xenopus laevis
8.
Cancers (Basel) ; 12(5)2020 May 15.
Article in English | MEDLINE | ID: mdl-32429078

ABSTRACT

BACKGROUND: In the triple-negative breast cancer (TNBC) group, the luminal androgen receptor subtype is characterized by expression of androgen receptor (AR) and lack of estrogen receptor and cytokeratin 5/6 expression. Cathepsin D (Cath-D) is overproduced and hypersecreted by breast cancer (BC) cells and is a poor prognostic marker. We recently showed that in TNBC, Cath-D is a potential target for antibody-based therapy. This study evaluated the frequency of AR/Cath-D co-expression and its prognostic value in a large series of patients with non-metastatic TNBC. METHODS: AR and Cath-D expression was evaluated by immunohistochemistry in 147 non-metastatic TNBC. The threshold for AR positivity (AR+) was set at ≥1% of stained cells, and the threshold for Cath-D positivity (Cath-D+) was moderate/strong staining intensity. Lymphocyte density, macrophage infiltration, PD-L1 and programmed cell death (PD-1) expression were assessed. RESULTS: Scarff-Bloom-Richardson grade 1-2 and lymph node invasion were more frequent, while macrophage infiltration was less frequent in AR+/Cath-D+ tumors (62.7%). In multivariate analyses, higher tumor size, no adjuvant chemotherapy and AR/Cath-D co-expression were independent prognostic factors of worse overall survival. CONCLUSIONS: AR/Cath-D co-expression independently predicted overall survival. Patients with TNBC in which AR and Cath-D are co-expressed could be eligible for combinatory therapy with androgen antagonists and anti-Cath-D human antibodies.

9.
J Immunother Cancer ; 7(1): 29, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30717773

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) treatment is currently restricted to chemotherapy. Hence, tumor-specific molecular targets and/or alternative therapeutic strategies for TNBC are urgently needed. Immunotherapy is emerging as an exciting treatment option for TNBC patients. The aspartic protease cathepsin D (cath-D), a marker of poor prognosis in breast cancer (BC), is overproduced and hypersecreted by human BC cells. This study explores whether cath-D is a tumor cell-associated extracellular biomarker and a potent target for antibody-based therapy in TNBC. METHODS: Cath-D prognostic value and localization was evaluated by transcriptomics, proteomics and immunohistochemistry in TNBC. First-in-class anti-cath-D human scFv fragments binding to both human and mouse cath-D were generated using phage display and cloned in the human IgG1 λ format (F1 and E2). Anti-cath-D antibody biodistribution, antitumor efficacy and in vivo underlying mechanisms were investigated in TNBC MDA-MB-231 tumor xenografts in nude mice. Antitumor effect was further assessed in TNBC patient-derived xenografts (PDXs). RESULTS: High CTSD mRNA levels correlated with shorter recurrence-free survival in TNBC, and extracellular cath-D was detected in the tumor microenvironment, but not in matched normal breast stroma. Anti-cath-D F1 and E2 antibodies accumulated in TNBC MDA-MB-231 tumor xenografts, inhibited tumor growth and improved mice survival without apparent toxicity. The Fc function of F1, the best antibody candidate, was essential for maximal tumor inhibition in the MDA-MB-231 model. Mechanistically, F1 antitumor response was triggered through natural killer cell activation via IL-15 upregulation, associated with granzyme B and perforin production, and the release of antitumor IFNγ cytokine. The F1 antibody also prevented the tumor recruitment of immunosuppressive tumor-associated macrophages M2 and myeloid-derived suppressor cells, a specific effect associated with a less immunosuppressive tumor microenvironment highlighted by TGFß decrease. Finally, the antibody F1 inhibited tumor growth of two TNBC PDXs, isolated from patients resistant or not to neo-adjuvant chemotherapy. CONCLUSION: Cath-D is a tumor-specific extracellular target in TNBC suitable for antibody-based therapy. Immunomodulatory antibody-based strategy against cath-D is a promising immunotherapy to treat patients with TNBC.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Cathepsin D/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Animals , Antibodies, Monoclonal/pharmacokinetics , Antineoplastic Agents, Immunological/pharmacokinetics , Cathepsin D/genetics , Cathepsin D/immunology , Cell Line, Tumor , Female , Humans , Immunotherapy , Mice, Nude , RNA, Messenger/metabolism , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
10.
Cell Mol Gastroenterol Hepatol ; 4(2): 263-282, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28752115

ABSTRACT

BACKGROUND & AIMS: Transforming growth factor beta (TGFß) acts either as a tumor suppressor or as an oncogene, depending on the cellular context and time of activation. TGFß activates the canonical SMAD pathway through its interaction with the serine/threonine kinase type I and II heterotetrameric receptors. Previous studies investigating TGFß-mediated signaling in the pancreas relied either on loss-of-function approaches or on ligand overexpression, and its effects on acinar cells have so far remained elusive. METHODS: We developed a transgenic mouse model allowing tamoxifen-inducible and Cre-mediated conditional activation of a constitutively active type I TGFß receptor (TßRICA) in the pancreatic acinar compartment. RESULTS: We observed that TßRICA expression induced acinar-to-ductal metaplasia (ADM) reprogramming, eventually facilitating the onset of KRASG12D-induced pre-cancerous pancreatic intraepithelial neoplasia. This phenotype was characterized by the cellular activation of apoptosis and dedifferentiation, two hallmarks of ADM, whereas at the molecular level, we evidenced a modulation in the expression of transcription factors such as Hnf1ß, Sox9, and Hes1. CONCLUSIONS: We demonstrate that TGFß pathway activation plays a crucial role in pancreatic tumor initiation through its capacity to induce ADM, providing a favorable environment for KRASG12D-dependent carcinogenesis. Such findings are highly relevant for the development of early detection markers and of potentially novel treatments for pancreatic cancer patients.

11.
Cancer Res ; 75(20): 4335-50, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26282171

ABSTRACT

The transcription accessory factor TIF1γ/TRIM33/RFG7/PTC7/Ectodermin functions as a tumor suppressor that promotes development and cellular differentiation. However, its precise function in cancer has been elusive. In the present study, we report that TIF1γ inactivation causes cells to accumulate chromosomal defects, a hallmark of cancer, due to attenuations in the spindle assembly checkpoint and the post-mitotic checkpoint. TIF1γ deficiency also caused a loss of contact growth inhibition and increased anchorage-independent growth in vitro and in vivo. Clinically, reduced TIF1γ expression in human tumors correlated with an increased rate of genomic rearrangements. Overall, our work indicates that TIF1γ exerts its tumor-suppressive functions in part by promoting chromosomal stability.


Subject(s)
Cell Cycle Checkpoints/genetics , Chromosomal Instability , Gene Expression Regulation, Neoplastic , Mitosis/genetics , Neoplasms/genetics , Neoplasms/metabolism , Transcription Factors/metabolism , Animals , Carcinoma in Situ , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Disease Progression , Down-Regulation , Epithelial-Mesenchymal Transition/genetics , Gene Silencing , Humans , Mice , Mice, Knockout , Neoplasms/pathology , Ploidies , Spindle Apparatus/metabolism
12.
Cell Adh Migr ; 9(1-2): 154-65, 2015.
Article in English | MEDLINE | ID: mdl-25793578

ABSTRACT

Tenascin-X is the largest member of the tenascin (TN) family of evolutionary conserved extracellular matrix glycoproteins, which also comprises TN-C, TN-R and TN-W. Among this family, TN-X is the only member described so far to exert a crucial architectural function as evidenced by a connective tissue disorder (a recessive form of Ehlers-Danlos syndrome) resulting from a loss-of-function of this glycoprotein in humans and mice. However, TN-X is more than an architectural protein, as it displays features of a matricellular protein by modulating cell adhesion. However, the cellular functions associated with the anti-adhesive properties of TN-X have not yet been revealed. Recent findings indicate that TN-X is also an extracellular regulator of signaling pathways. Indeed, TN-X has been shown to regulate the bioavailability of the Transforming Growth Factor (TGF)-ß and to modulate epithelial cell plasticity. The next challenges will be to unravel whether the signaling functions of TN-X are functionally linked to its matricellular properties.


Subject(s)
Cell Adhesion/physiology , Epithelial Cells/metabolism , Homeostasis/physiology , Signal Transduction/physiology , Tenascin/metabolism , Animals , Humans , Transforming Growth Factor beta/metabolism
13.
Cell Mol Life Sci ; 72(5): 1009-27, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25260970

ABSTRACT

The metalloproteinase BMP-1 (bone morphogenetic protein-1) plays a major role in the control of extracellular matrix (ECM) assembly and growth factor activation. Most of the growth factors activated by BMP-1 are members of the TGF-ß superfamily known to regulate multiple biological processes including embryonic development, wound healing, inflammation and tumor progression. In this study, we used an iTRAQ (isobaric tags for relative and absolute quantification)-based quantitative proteomic approach to reveal the release of proteolytic fragments from the cell surface or the ECM by BMP-1. Thirty-eight extracellular proteins were found in significantly higher or lower amounts in the conditioned medium of HT1080 cells overexpressing BMP-1 and thus, could be considered as candidate substrates. Strikingly, three of these new candidates (betaglycan, CD109 and neuropilin-1) were TGF-ß co-receptors, also acting as antagonists when released from the cell surface, and were chosen for further substrate validation. Betaglycan and CD109 proved to be directly cleaved by BMP-1 and the corresponding cleavage sites were extensively characterized using a new mass spectrometry approach. Furthermore, we could show that the ability of betaglycan and CD109 to interact with TGF-ß was altered after cleavage by BMP-1, leading to increased and prolonged SMAD2 phosphorylation in BMP-1-overexpressing cells. Betaglycan processing was also observed in primary corneal keratocytes, indicating a general and novel mechanism by which BMP-1 directly affects signaling by controlling TGF-ß co-receptor activity. The proteomic data have been submitted to ProteomeXchange with the identifier PXD000786 and doi: 10.6019/PXD000786 .


Subject(s)
Bone Morphogenetic Protein 1/metabolism , Proteomics , Receptors, Transforming Growth Factor beta/metabolism , Antigens, CD/metabolism , Bone Morphogenetic Protein 1/genetics , Cell Line, Tumor , Chromatography, High Pressure Liquid , Extracellular Matrix/metabolism , GPI-Linked Proteins/metabolism , Humans , Neoplasm Proteins/metabolism , Neuropilin-1/metabolism , Peptides/analysis , Phosphorylation , Protein Binding , Proteoglycans/metabolism , Proteolysis , Signal Transduction , Smad2 Protein/metabolism , Spectrometry, Mass, Electrospray Ionization , Transforming Growth Factor beta/metabolism
14.
J Cell Biol ; 205(3): 409-28, 2014 May 12.
Article in English | MEDLINE | ID: mdl-24821840

ABSTRACT

Transforming growth factor ß (TGF-ß) isoforms are secreted as inactive complexes formed through noncovalent interactions between the bioactive TGF-ß entity and its N-terminal latency-associated peptide prodomain. Extracellular activation of the latent TGF-ß complex is a crucial step in the regulation of TGF-ß function for tissue homeostasis. We show that the fibrinogen-like (FBG) domain of the matrix glycoprotein tenascin-X (TNX) interacts physically with the small latent TGF-ß complex in vitro and in vivo, thus regulating the bioavailability of mature TGF-ß to cells by activating the latent cytokine into an active molecule. Activation by the FBG domain most likely occurs through a conformational change in the latent complex and involves a novel cell adhesion-dependent mechanism. We identify α11ß1 integrin as a cell surface receptor for TNX and show that this integrin is crucial to elicit FBG-mediated activation of latent TGF-ß and subsequent epithelial-to-mesenchymal transition in mammary epithelial cells.


Subject(s)
Epithelial-Mesenchymal Transition , Mammary Glands, Animal/metabolism , Mammary Glands, Human/metabolism , Protein Precursors/metabolism , Tenascin/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Cattle , Cell Adhesion , Cell Line, Tumor , Epithelial Cells/metabolism , Female , HEK293 Cells , Humans , Integrins/genetics , Integrins/metabolism , Mice , Phosphorylation , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Protein Precursors/genetics , RNA Interference , Receptors, Collagen/genetics , Receptors, Collagen/metabolism , Recombinant Proteins/metabolism , Signal Transduction , Smad Proteins/genetics , Smad Proteins/metabolism , Tenascin/genetics , Transfection , Transforming Growth Factor beta1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...