Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Plant ; 175(6): e14088, 2023.
Article in English | MEDLINE | ID: mdl-38148205

ABSTRACT

Oilseed rape and other crops of Brassica napus have a high demand for boron (B). Boron deficiencies result in the inhibition of root growth, and eventually premature flower abortion. Understanding the genetic mechanisms underlying flower abortion in B-limiting conditions could provide the basis to enhance B-efficiency and prevent B-deficiency-related yield losses. In this study, we assessed transcriptomic responses to B-deficiency in diverse inflorescence tissues at multiple time points of soil-grown plants that were phenotypically unaffected by B-deficiency until early flowering. Whilst transcript levels of known B transporters were higher in B-deficient samples, these remained remarkably stable as the duration of B-deficiency increased. Meanwhile, GO-term enrichment analysis indicated a growing response resembling that of a pathogen or pest attack, escalating to a huge transcriptome response in shoot heads at mid-flowering. Grouping differentially expressed genes within this tissue into MapMan functional bins indicated enrichment of genes related to wounding, jasmonic acid and WRKY transcription factors. Individual candidate genes for controlling the "flowering-without-seed-setting" phenotype from within MapMan biotic stress bins include those of the metacaspase family, which have been implicated in orchestrating programmed cell death. Overall temporal expression patterns observed here imply a dynamic response to B-deficiency, first increasing expression of B transporters before recruiting various biotic stress-related pathways to coordinate targeted cell death, likely in response to as yet unidentified B-deficiency induced damage-associated molecular patterns (DAMPs). This response indicates new pathways to target and dissect to control B-deficiency-induced flower abortion and to develop more B-efficient crops.


Subject(s)
Brassica napus , Transcriptome , Transcriptome/genetics , Inflorescence/genetics , Inflorescence/metabolism , Brassica napus/genetics , Brassica napus/metabolism , Boron/metabolism , Gene Expression Profiling , Membrane Transport Proteins/metabolism
2.
Ecotoxicol Environ Saf ; 201: 110777, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32485493

ABSTRACT

Selenium (Se) is a beneficial element to higher plants. Application of Se at low concentrations enhances the antioxidant metabolism reducing the reactive oxygen species (ROS) generated by plant membrane cells. This study aimed to evaluate how the application of Se in the forms sodium selenate and sodium selenite regulates ROS scavenging in field-grown cowpea plants. Seven Se application rates (0; 2.5; 5; 10; 20; 40 and 60 g ha-1) of each of the two Se forms were applied to plants via the soil. Photosynthetic pigments concentration, gas exchange parameters, lipid peroxidation by malondialdehyde (MDA) concentration, hydrogen peroxide concentration, activity of catalase (CAT, EC:1.11.1.6), glutathione reductase (GR, EC:1.6.4.2), ascorbate peroxidase (APX, EC:1.11.1.11) and Se concentration in leaves and grains were evaluated. In general, Se application led to a decrease in chlorophyll a concentration whilst leading to an increase in chlorophyll b, indicating conservation of total chlorophyll concentration. Application of 2.5 g ha-1 of Se as selenate provided a notable increase in total chlorophyll and total carotenoids compared to the other application rates. Selenate and selenite application decreased lipid peroxidation. However, each Se source acted in a different pathway to combat ROS. While selenate showed more potential to increase activity of APX and GR, selenite showed a higher potential to increase CAT activity. The negative correlation between CAT and GR is indicative that both pathways might be activated under distinct circumstances. The more prominent activity of CAT under high rates of selenite resulted in a negative correlation of this enzyme with chlorophyll a and carotenoids. Both selenate and selenite application increased sucrose and total sugars concentration in leaves of cowpea plants. Overall, these results indicate that application of Se in cowpea under field conditions stimulates distinct pathways to scavenge ROS. This could prove beneficial to mitigate oxidative stress during plant development.


Subject(s)
Reactive Oxygen Species/metabolism , Selenic Acid/toxicity , Selenious Acid/toxicity , Vigna/drug effects , Antioxidants/metabolism , Ascorbate Peroxidases/metabolism , Catalase/metabolism , Chlorophyll , Chlorophyll A , Glutathione Reductase/metabolism , Photosynthesis , Plant Leaves/metabolism , Selenic Acid/metabolism , Selenious Acid/metabolism , Selenium/metabolism , Sodium Selenite , Vigna/metabolism , Vigna/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...