Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Int. microbiol ; 26(1): 25-42, Ene. 2023. ilus, graf
Article in English | IBECS | ID: ibc-215914

ABSTRACT

Leishmania donovani causes anthroponotic visceral leishmaniasis, responsible for about 50,000 annual deaths worldwide. Current therapies have considerable side effects. Drug resistance has been reported and no vaccine is available nowadays. The development of undifferentiated promastigotes in the sand fly vector’s gut leads to the promastigote form that is highly infective to the mammalian host. Fully differentiated promastigotes play a crucial role in the initial stages of mammalian host infection before internalization in the host phagocytic cell. Therefore, the study of protein levels in the promastigote stage is relevant for disease control, and proteomics analysis is an ideal source of vaccine candidate discovery. This study aims to get insight into the protein levels during the differentiation process of promastigotes by 2DE-MALDI-TOF/TOF. This partial proteome analysis has led to the identification of 75 proteins increased in at least one of the L. donovani promastigote differentiation and growth phases. This study has revealed the differential abundance of said proteins during growth and differentiation. According to previous studies, some are directly involved in parasite survival or are immunostimulatory. The parasite survival–related proteins are ascorbate peroxidase; cystathionine β synthase; an elongation factor 1β paralog; elongation factor 2; endoribonuclease L-PSP; an iron superoxide dismutase paralog; GDP-mannose pyrophosphorylase; several heat shock proteins—HSP70, HSP83-17, mHSP70-rel, HSP110; methylthioadenosine phosphorylase; two thiol-dependent reductase 1 paralogs; transitional endoplasmic reticulum ATPase; and the AhpC thioredoxin paralog. The confirmed immunostimulatory proteins are the heat shock proteins, enolase, and protein kinase C receptor analog. The potential immunostimulatory molecules according to findings in patogenic bacteria are fructose-1,6-diphophate aldolase, dihydrolipoamide acetyltransferase, isocitrate dehydrogenase...(AU)


Subject(s)
Humans , Leishmania donovani , Leishmaniasis, Visceral , Therapeutics , Drug Resistance, Microbial , Microbiology
2.
Int Microbiol ; 26(1): 25-42, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35930160

ABSTRACT

Leishmania donovani causes anthroponotic visceral leishmaniasis, responsible for about 50,000 annual deaths worldwide. Current therapies have considerable side effects. Drug resistance has been reported and no vaccine is available nowadays. The development of undifferentiated promastigotes in the sand fly vector's gut leads to the promastigote form that is highly infective to the mammalian host. Fully differentiated promastigotes play a crucial role in the initial stages of mammalian host infection before internalization in the host phagocytic cell. Therefore, the study of protein levels in the promastigote stage is relevant for disease control, and proteomics analysis is an ideal source of vaccine candidate discovery. This study aims to get insight into the protein levels during the differentiation process of promastigotes by 2DE-MALDI-TOF/TOF. This partial proteome analysis has led to the identification of 75 proteins increased in at least one of the L. donovani promastigote differentiation and growth phases. This study has revealed the differential abundance of said proteins during growth and differentiation. According to previous studies, some are directly involved in parasite survival or are immunostimulatory. The parasite survival-related proteins are ascorbate peroxidase; cystathionine ß synthase; an elongation factor 1ß paralog; elongation factor 2; endoribonuclease L-PSP; an iron superoxide dismutase paralog; GDP-mannose pyrophosphorylase; several heat shock proteins-HSP70, HSP83-17, mHSP70-rel, HSP110; methylthioadenosine phosphorylase; two thiol-dependent reductase 1 paralogs; transitional endoplasmic reticulum ATPase; and the AhpC thioredoxin paralog. The confirmed immunostimulatory proteins are the heat shock proteins, enolase, and protein kinase C receptor analog. The potential immunostimulatory molecules according to findings in patogenic bacteria are fructose-1,6-diphophate aldolase, dihydrolipoamide acetyltransferase, isocitrate dehydrogenase, pyruvate dehydrogenase E1α and E1ß subunits, and triosephosphate isomerase. These proteins may become disease control candidates through future intra-vector control methods or vaccines.


Subject(s)
Leishmania donovani , Animals , Proteome , Cell Differentiation , Heat-Shock Proteins , Protozoan Proteins/analysis , Mammals/metabolism
3.
Front Immunol ; 13: 1023255, 2022.
Article in English | MEDLINE | ID: mdl-36439169

ABSTRACT

SARS-CoV-2 vaccines currently in use have contributed to controlling the COVID-19 pandemic. Notwithstanding, the high mutation rate, fundamentally in the spike glycoprotein (S), is causing the emergence of new variants. Solely utilizing this antigen is a drawback that may reduce the efficacy of these vaccines. Herein we present a DNA vaccine candidate that contains the genes encoding the S and the nucleocapsid (N) proteins implemented into the non-replicative mammalian expression plasmid vector, pPAL. This plasmid lacks antibiotic resistance genes and contains an alternative selectable marker for production. The S gene sequence was modified to avoid furin cleavage (Sfs). Potent humoral and cellular immune responses were observed in C57BL/6J mice vaccinated with pPAL-Sfs + pPAL-N following a prime/boost regimen by the intramuscular route applying in vivo electroporation. The immunogen fully protected K18-hACE2 mice against a lethal dose (105 PFU) of SARS-CoV-2. Viral replication was completely controlled in the lungs, brain, and heart of vaccinated mice. Therefore, pPAL-Sfs + pPAL-N is a promising DNA vaccine candidate for protection from COVID-19.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Mice , Animals , Humans , SARS-CoV-2 , COVID-19 Vaccines , Pandemics , Mice, Inbred BALB C , Mice, Inbred C57BL , COVID-19/prevention & control , Anti-Bacterial Agents , Mammals
4.
Vaccines (Basel) ; 10(2)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35214689

ABSTRACT

Leishmania parasites cause outstanding levels of morbidity and mortality in many developing countries in tropical and subtropical regions. Numerous gene expression profiling studies have been performed comparing different Leishmania species' life-cycles and stage forms in regard to their distinct infective ability. Based on expression patterns, homology to human orthologues, in silico HLA-binding predictions, and annotated functions, we were able to select several vaccine candidates which are currently under study. One of these candidates is the Leishmania infantum ubiquitin-conjugating enzyme E2 (LiUBC1), whose relative levels, subcellular location, in vitro infectivity in the U937 myeloid human cell model, and protection levels in Syrian hamsters against L. infantum infection were studied herein. LiUBC1 displays a low level of similarity with the mammalian orthologs and relevant structure differences, such as the C-terminal domain, which is absent in the human ortholog. LiUBC1 is present in highly infective promastigotes. Knock-in parasites overexpressing the enzyme increased their infectivity, according to in vitro experiments. Syrian hamsters immunized with the recombinant LiUBC1 protein did not show any parasite burden in the spleen, unlike the infection control group. The IFN-γ transcript levels in splenocytes were significantly higher in the LiUBC1 immunized group. Therefore, LiUBC1 induced partial protection against L. infantum in the Syrian hamster model.

5.
PLoS Negl Trop Dis ; 13(5): e0007288, 2019 05.
Article in English | MEDLINE | ID: mdl-31071080

ABSTRACT

BACKGROUND: Leishmania development in the sand fly gut leads to highly infective forms called metacyclic promastigotes. This process can be routinely mimicked in culture. Gene expression-profiling studies by transcriptome analysis have been performed with the aim of studying promastigote forms in the sand fly gut, as well as differences between sand fly-and culture-derived promastigotes. FINDINGS: Transcriptome analysis has revealed the crucial role of the microenvironment in parasite development within the sand fly gut because substantial differences and moderate correlation between the transcriptomes of cultured and sand fly-derived promastigotes have been found. Sand fly-derived metacyclics are more infective than metacyclics in culture. Therefore, some caution should be exercised when using cultured promastigotes, depending on the experimental design. The most remarkable examples are the hydrophilic acidic surface protein/small endoplasmic reticulum protein (HASP/SHERP) cluster, the glycoprotein 63 (gp63), and autophagy genes, which are up-regulated in sand fly-derived promastigotes compared with cultured promastigotes. Because HASP/SHERP genes are up-regulated in nectomonad and metacyclic promastigotes in the sand fly, the encoded proteins are not metacyclic specific. Metacyclic promastigotes are distinguished by morphology and high infectivity. Isolating them from the sand fly gut is not exempt from technical difficulty, because other promastigote forms remain in the gut even 15 days after infection. Leishmania major procyclic promastigotes within the sand fly gut up-regulate genes involved in cell cycle regulation and glucose catabolism, whereas metacyclics increase transcript levels of fatty acid biosynthesis and ATP-coupled proton transport genes. Most parasite's signal transduction pathways remain uncharacterized. Future elucidation may improve understanding of parasite development, particularly signaling molecule-encoding genes in sand fly versus culture and between promastigote forms in the sand fly gut. CONCLUSIONS: Transcriptome analysis has been demonstrated to be technically efficacious to study differential gene expression in sand fly gut promastigote forms. Transcript and protein levels are not well correlated in these organisms (approximately 25% quantitative coincidences), especially under stress situations and at differentiation processes. However, transcript and protein levels behave similarly in approximately 60% of cases from a qualitative point of view (increase, decrease, or no variation). Changes in translational efficiency observed in other trypanosomatids strongly suggest that the differences are due to translational regulation and regulation of the steady-state protein levels. The lack of low-input sample strategies does not allow translatome and proteome analysis of sand fly-derived promastigotes so far.


Subject(s)
Leishmania/growth & development , Leishmania/genetics , Protozoan Proteins/genetics , Psychodidae/parasitology , Animals , Gastrointestinal Tract/parasitology , Genomics , Leishmania/classification , Leishmania/isolation & purification , Protozoan Proteins/metabolism , Transcriptome
6.
Methods Mol Biol ; 1971: 95-108, 2019.
Article in English | MEDLINE | ID: mdl-30980299

ABSTRACT

High-throughput sequencing of cDNA copies of mRNA (RNA-seq) provides a digital readout of mRNA levels over several orders of magnitude, as well as mapping the transcripts to the nucleotide level. Here we describe two different RNA-seq approaches, including one that exploits the 39-nucleotide mini-exon or spliced leader (SL) sequence found at the 5' end of all Leishmania (and other trypanosomatid) mRNAs.


Subject(s)
Exons , High-Throughput Nucleotide Sequencing/methods , Leishmania/genetics , RNA, Messenger/genetics , RNA, Protozoan/genetics , Sequence Analysis, RNA/methods
7.
Int. microbiol ; 22(1): 143-154, mar. 2019. graf, tab
Article in English | IBECS | ID: ibc-184822

ABSTRACT

Anthroponotic visceral leishmaniasis is a life-threatening disease caused by Leishmania donovani (Kinetoplastida: Trypanosomatidae) in East Africa and the Indian subcontinent. Unlike promastigote growth and differentiation in the sand fly gut or in axenic culture, L. donovani promastigote-into-amastigote development has been studied by high-throughput gene expression profiling. In this study, we have identified abundant constitutive proteins in axenically cultured promastigotes by two-dimension electrophoresis and matrix-assisted laser desorption-ionization tandem time-of-flight (MALDI-TOF/TOF) mass spectrometry. Most proteins involved in the trypanothione-based redox antioxidant system are expressed constitutively throughout axenic L. donovani promastigote growth and differentiation (tryparedoxin, trypanothione peroxidase, generic peroxidoxin, iron-superoxide dismutase, and elongation factor 1ß). These findings are in agreement with previous data on other Old World species (i.e., L. major and L. infantum), whereas New World species (i.e., L. amazonensis and L. pifanoi) and Crithidia fasciculata show different expression patterns


No disponible


Subject(s)
Leishmania donovani/chemistry , Leishmania donovani/growth & development , Proteome/analysis , Protozoan Proteins/analysis , Electrophoresis, Gel, Two-Dimensional , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
8.
PLoS One ; 14(2): e0212136, 2019.
Article in English | MEDLINE | ID: mdl-30794597

ABSTRACT

Leishmania infantum causes zoonotic visceral leishmaniasis (ZVL) in the Mediterranean basin and South America. The parasite has been shown to co-infect HIV patients and an outbreak in central Spain was reported in the last decade. Therfore, ZVL is a public health problem, dogs being the parasite's reservoir. We have developed a DNA vaccine based on the L. infantum activated protein kinase A receptor (LACK) using different plasmid vectors and vaccinia virus strains as vehicles. Recently, we have generated an antibiotic resistance marker-free plasmid vector called pPAL. Homologous pPAL-LACK prime-boost vaccination protects Beagle dogs as well as a heterologous plasmid-virus regime. For both reasons, pPAL improves safety. IL12 was described to trigger Th1 response through IFN-γ production in infected dogs, being a good candidate for cytokine therapy in conventional treatment-unresponsive dogs. Herein, we report a complete protection study in dogs through inoculation of genes encoding for the p35 and p40 subunits which compose canine IL12 in combination with the LACK gene. A homologous plasmid-plasmid regime using independent pPAL constructs for each gene was inoculated in a 15-day interval. The infectious challenge using L. infantum promastigotes was successful. The outcome was pPAL-LACK vaccine protection suppression by IL12 administration. The important implications of this finding are discussed in the manuscript.


Subject(s)
Adjuvants, Immunologic/genetics , Interleukin-12/genetics , Leishmaniasis, Visceral/prevention & control , Protein Subunits/genetics , Protozoan Vaccines/genetics , Protozoan Vaccines/immunology , Animals , Dogs , Female , Immunity, Humoral , Male
9.
Int Microbiol ; 22(1): 143-154, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30810941

ABSTRACT

Anthroponotic visceral leishmaniasis is a life-threatening disease caused by Leishmania donovani (Kinetoplastida: Trypanosomatidae) in East Africa and the Indian subcontinent. Unlike promastigote growth and differentiation in the sand fly gut or in axenic culture, L. donovani promastigote-into-amastigote development has been studied by high-throughput gene expression profiling. In this study, we have identified abundant constitutive proteins in axenically cultured promastigotes by two-dimension electrophoresis and matrix-assisted laser desorption-ionization tandem time-of-flight (MALDI-TOF/TOF) mass spectrometry. Most proteins involved in the trypanothione-based redox antioxidant system are expressed constitutively throughout axenic L. donovani promastigote growth and differentiation (tryparedoxin, trypanothione peroxidase, generic peroxidoxin, iron-superoxide dismutase, and elongation factor 1ß). These findings are in agreement with previous data on other Old World species (i.e., L. major and L. infantum), whereas New World species (i.e., L. amazonensis and L. pifanoi) and Crithidia fasciculata show different expression patterns.


Subject(s)
Leishmania donovani/chemistry , Leishmania donovani/growth & development , Proteome/analysis , Protozoan Proteins/analysis , Electrophoresis, Gel, Two-Dimensional , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
10.
Plasmid ; 101: 35-42, 2019 01.
Article in English | MEDLINE | ID: mdl-30529129

ABSTRACT

DNA vaccines require a vector to replicate genes and express encoding antigens. Antibiotic resistance genes are often used as selection markers, which must not be released to the environment upon final product commercialization. For this reason, generation of antibiotic resistance-free vectors is imperative. The pPAL vector contains the cytomegalovirus enhancer and promoter for expression in mammalian cells and the E. coli fabI chromosomal gene as a selectable marker. The fabI gene encodes the enoyl-ACP reductase (FabI). The bacteriostatic compound triclosan is an inhibitor of this enzyme. Therefore, the selection of positive clones depends on the enzyme:inhibitor molar ratio. According to western blot analysis, the pPAL vector is functional for expression of the Leishmania infantum (Kinetoplastid: Trypanosomatidae) gene encoding for the protein kinase C receptor analog (LACK/p36) in the HEK293T human cell line transfected with pPAL-LACK. The fabI gene sequence contains a 210 bp CpG island, suggesting a potential role as an adjuvant of the antibiotic resistance-free pPAL vector. In fact, Th1 response induction levels against canine leishmaniasis only using pPAL-LACK was shown to be as strong as in previous strategies using a recombinant vaccinia virus in combination with standard mammalian expression plasmid vectors. In summary, the pPAL plasmid contains the essential elements for manipulation and expression of any cloned DNA sequence in prokaryotic and mammalian cells using an E. coli endogenous gene as a selectable marker, which also provides a long CpG island. This element enhances Th1 immune response against L. infantum infection in dogs using the gene encoding for the LACK antigen. Therefore, this antibiotic resistance-free plasmid is a vaccine vector actively participating in protection against canine leishmaniasis and may be potentially tested as a vaccine vector with other antigens against different pathogens.


Subject(s)
Antigens, Protozoan/genetics , Leishmania infantum/drug effects , Leishmaniasis Vaccines/immunology , Leishmaniasis, Visceral/prevention & control , Plasmids/immunology , Protozoan Proteins/genetics , Vaccines, DNA/immunology , Animals , Antigens, Protozoan/immunology , CpG Islands , Cytomegalovirus/genetics , Dogs , Drug Resistance, Microbial , Enhancer Elements, Genetic , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Fatty Acid Synthase, Type II/genetics , Genetic Markers , HEK293 Cells , Humans , Leishmania infantum/immunology , Leishmaniasis Vaccines/administration & dosage , Leishmaniasis Vaccines/genetics , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Plasmids/administration & dosage , Plasmids/metabolism , Promoter Regions, Genetic , Protozoan Proteins/immunology , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/parasitology , Triclosan/pharmacology , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics
11.
Acta Trop ; 187: 72-77, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30055178

ABSTRACT

The kinetoplastid parasite Leishmania infantum is responsible for zoonotic visceral leishmaniasis in the mediterranean basin, where dogs are the reservoir. Differential gene expression analysis of metacyclic promastigotes in axenic culture by whole genome DNA microarray hybridization revealed up-regulation of two unidentified genes that are absent in the parasite's genome databases. Sequence analysis has revealed that these genes encode for guide RNAs (gRNAs), which are located in the kinetoplast and participate in the kinetoplastid-specific uridine insertion/deletion RNA editing process. Northern blot assays have confirmed that both gRNA genes are up-regulated in metacyclic promastigotes, thus suggesting that uridine insertion/deletion RNA editing contributes to metabolic shifts at this stage. A screening strategy described herein has revealed an uncharacterized 16S-like rRNA transcript as a target of one of the aforementioned gRNAs.


Subject(s)
Antigens, Protozoan/genetics , Leishmania infantum/genetics , Leishmaniasis, Visceral/genetics , Leishmaniasis, Visceral/parasitology , RNA, Guide, Kinetoplastida/genetics , Animals , Disease Vectors , Dogs , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Up-Regulation
12.
Acta Trop ; 187: 129-139, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29746872

ABSTRACT

The first completed genome project of any living organism, excluding viruses, was of the gammaproteobacteria Haemophilus influenzae in 1995. Until the last decade, genome sequencing was very tedious because genome survey sequences (GSS) and/or expressed sequence tags (ESTs) belonging to plasmid, cosmid, and artificial chromosome genome libraries had to be sequenced and assembled in silico. No genome is completely assembled because gaps and unassembled contigs are always remaining. However, most represent an organism's whole genome from a practical point of view. The first genome sequencing projects of trypanosomatid parasites Leishmania major, Trypanosoma cruzi, and T. brucei were completed in 2005 following those strategies. The functional genomics era developed on the basis of microarray technology and has been continuously evolving. In the case of the genus Leishmania, substantial information about differentiation in the digenetic life cycle of the parasite has been obtained. More recently, next generation sequencing has revolutionized genome sequencing and functional genomics, leading to more sensitive and accurate results by using much fewer resources. Though this new technology is more advantageous, it does not invalidate microarray results. In fact, promising vaccine candidates and drug targets have been found by means of microarray-based screening and preliminary proof-of-concept tests.


Subject(s)
Gene Expression Profiling , Leishmania major/genetics , Sequence Analysis, DNA , Trypanosoma cruzi/genetics , Whole Genome Sequencing , Animals , Expressed Sequence Tags , Microarray Analysis , Oligonucleotide Array Sequence Analysis , Retrospective Studies
13.
Parasitol Int ; 67(4): 476-480, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29609036

ABSTRACT

Leishmania infantum is responsible for human and canine leishmaniasis in the Mediterranean basin, where the major vector is Phlebotomus perniciosus. Because isolation of sufficient parasites from the sand fly gut is technically challenging, axenic cultivation of promastigotes is routinely used to obtain material for biochemical and genetic analyses. Here, we report the use of Spliced Leader RNA-seq (SL-seq) to compare transcript abundance in cultured promastigotes and those obtained from the whole midgut of the sand fly 5 days after infection. SL-seq allows for amplification of RNA from the parasite avoiding contamination with RNA from the gut of the insect. The study has been performed by means of a single technical replicate comparing pools of samples obtained from sand fly-derived (sfPro) and axenic culture promastigotes (acPro). Although there was a moderate correlation (R2 = 0.83) in gene expression, 793 genes showed significantly different (≥2-fold, p <0.05) mRNA levels in sand fly-derived promastigotes and in culture, of which 31 were up-regulated ≥8-fold (p < 10-8 in most cases). These included several genes that are typically up-regulated during metacyclogenesis, suggesting that sand fly-derived promastigotes contain a substantial number of metacyclics, and/or that their differentiation status as metacyclics is more advanced in these populations. Infection experiments and studies evaluating the proportion of metacyclic promastigotes in culture and within the sand fly gut, previously reported by us, support the last hypothesis.


Subject(s)
Leishmania infantum/genetics , Leishmania infantum/isolation & purification , Life Cycle Stages/genetics , Phlebotomus/parasitology , Animals , Axenic Culture/methods , Disease Vectors , Gene Expression Profiling/methods , Intestines/parasitology , Leishmania infantum/physiology , Leishmaniasis/ethnology , Leishmaniasis/parasitology , Phlebotomus/anatomy & histology , Sequence Analysis, RNA/methods
16.
PLoS One ; 11(10): e0164344, 2016.
Article in English | MEDLINE | ID: mdl-27776144

ABSTRACT

Leishmania amazonensis is one of the major etiological agents of the neglected, stigmatizing disease termed american cutaneous leishmaniasis (ACL). ACL is a zoonosis and rodents are the main reservoirs. Most cases of ACL are reported in Brazil, Bolivia, Colombia and Peru. The biological cycle of the parasite is digenetic because sand fly vectors transmit the motile promastigote stage to the mammalian host dermis during blood meal intakes. The amastigote stage survives within phagocytes of the mammalian host. The purpose of this study is detection and identification of changes in protein abundance by 2DE/MALDI-TOF/TOF at the main growth phases of L. amazonensis promastigotes in axenic culture and the differentiation process that takes place simultaneously. The average number of proteins detected per gel is 202 and the non-redundant cumulative number is 339. Of those, 63 are differentially abundant throughout growth and simultaneous differentiation of L. amazonensis promastigotes. The main finding is that certain proteins involved in resistance to nitrosative and oxidative stress are more abundant at the last stages of growth and differentiation of cultured L. amazonensis promastigotes. These proteins are the arginase, a light variant of the tryparedoxin peroxidase, the iron superoxide dismutase, the regulatory subunit of the protein kinase A and a light HSP70 variant. These data taken together with the decrease of the stress-inducible protein 1 levels are additional evidence supporting the previously described pre-adaptative hypothesis, which consists of preparation in advance towards the amastigote stage.


Subject(s)
Leishmania/metabolism , Nitrosation , Oxidative Stress , Proteome , Protozoan Proteins/metabolism , Electrophoresis, Gel, Two-Dimensional , Leishmania/genetics , Proteolysis , Signal Transduction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Up-Regulation
17.
Proteomics Clin Appl ; 10(11): 1132-1146, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27600252

ABSTRACT

PURPOSE: Leishmania chagasi is the causative agent of zoonotic visceral leishmaniasis in Brazil. Domestic and stray dogs are the main reservoirs. The life cycle of the parasite involves two stages. Promastigotes are extracellular and develop within the sand fly gut. Amastigotes survive inside the harsh environment of the phagolysosome of mammalian host phagocytes, which display the nitric oxide defense mechanism. Surprisingly, we were able to isolate promastigotes that are also resistant to NO. This finding may be explained by the preadaptative hypothesis. An insight into the proteome of NO-sensitive and resistant promastigotes is presented herein. EXPERIMENTAL DESIGN: Total protein extracts were prepared from promastigote cultures of an NO-sensitive and a resistant strain at early-logarithmic, mid-logarithmic and stationary phase. A population enriched in metacyclic promastigotes was also isolated by Percoll gradient centrifugation. In vitro infectivity of both strains was compared. Differential protein abundance was analyzed by 2DE-MALDI-TOF/TOF. The most striking results were tested at the mRNA level by qRT-PCR. Three biological replicates were performed in all cases. RESULTS: NO-resistant L. chagasi promastigotes are more infective than NO-sensitive ones. Among the differentially abundant spots, 40 proteins could be successfully identified in the sensitive strain and 38 in resistant promastigotes. CONCLUSIONS AND CLINICAL RELEVANCE: The increase of G6PD and the decrease of ARG and GPX transcripts and proteins contribute to NO resistance in L. chagasi promastigotes. These proteins may be studied as potential drug targets and/or vaccine candidates in the future.


Subject(s)
Leishmania infantum/metabolism , Nitric Oxide/toxicity , Protozoan Proteins/analysis , Animals , Arginase/genetics , Arginase/metabolism , Bone Marrow/parasitology , Dogs , Drug Resistance , Electrophoresis, Gel, Two-Dimensional , Female , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Leishmania infantum/drug effects , Leishmania infantum/isolation & purification , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/pathology , Leishmaniasis, Visceral/veterinary , Male , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Real-Time Polymerase Chain Reaction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
18.
PLoS Negl Trop Dis ; 10(5): e0004693, 2016 05.
Article in English | MEDLINE | ID: mdl-27163123

ABSTRACT

Zoonotic visceral leishmaniasis is a vector-borne disease caused by Leishmania infantum in the Mediterranean Basin, where domestic dogs and wild canids are the main reservoirs. The promastigote stage replicates and develops within the gut of blood-sucking phlebotomine sand flies. Mature promastigotes are injected in the dermis of the mammalian host and differentiate into the amastigote stage within parasitophorous vacuoles of phagocytic cells. The major vector of L. infantum in Spain is Phlebotomus perniciosus. Promastigotes are routinely axenized and cultured to mimic in vitro the conditions inside the insect gut, which allows for most molecular, cellular, immunological and therapeutical studies otherwise inviable. Culture passages are known to decrease infectivity, which is restored by passage through laboratory animals. The most appropriate source of promastigotes is the gut of the vector host but isolation of the parasite is technically challenging. In fact, this option is not viable unless small samples are sufficient for downstream applications like promastigote cultures and nucleic acid amplification. In this study, in vitro infectivity and differential gene expression have been studied in cultured promastigotes at the stationary phase and in promastigotes isolated from the stomodeal valve of the sand fly P. perniciosus. About 20 ng RNA per sample could be isolated. Each sample contained L. infantum promastigotes from 20 sand flies. RNA was successfully amplified and processed for shotgun genome microarray hybridization analysis. Most differentially regulated genes are involved in regulation of gene expression, intracellular signaling, amino acid metabolism and biosynthesis of surface molecules. Interestingly, meta-analysis by hierarchical clustering supports that up-regulation of 22.4% of the differentially regulated genes is specifically enhanced by the microenvironment (i.e. sand fly gut or culture). The correlation between cultured and naturally developed promastigotes is strong but not very high (Pearson coefficient R2 = 0.727). Therefore, the influence of promastigote culturing should be evaluated case-by-case in experimentation.


Subject(s)
Leishmania infantum/genetics , Leishmaniasis, Visceral/transmission , Psychodidae/parasitology , Transcriptome , Animals , Cell Line, Tumor , DNA Repair , Gene Expression Regulation , Homeostasis , Humans , Leishmania infantum/growth & development , Leishmania infantum/metabolism , Multigene Family , Signal Transduction
19.
BMC Genomics ; 17: 375, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27206922

ABSTRACT

BACKGROUND: Leishmania infantum is the protozoan parasite responsible for zoonotic visceral leishmaniasis in the Mediterranean basin. A recent outbreak in humans has been reported in this area. The life cycle of the parasite is digenetic. The promastigote stage develops within the gut of phlebotomine sand flies, whereas amastigotes survive and multiply within phagolysosomes of mammalian host phagocytes. The major vector of L. infantum in Spain is Phlebotomus perniciosus. The axenic culture model of promastigotes is generally used because it is able to mimic the conditions of the natural environment (i.e. the sand fly vector gut). However, infectivity decreases with culture passages and infection of laboratory animals is frequently required. Enrichment of the stationary phase population in highly infective metacyclic promastigotes is achieved by negative selection with peanut agglutinin (PNA), which is possible only in certain Leishmania species such as L. major and L. infantum. In this study, in vitro infectivity and differential gene expression of cultured PNA-negative promastigotes (Pro-PNA(-)) and metacyclic promastigotes isolated from the sand fly anterior thoracic midgut (Pro-Pper) have been compared. RESULTS: In vitro infectivity is about 30 % higher in terms of rate of infected cells and number of amastigotes per infected cell in Pro-Pper than in Pro-PNA(-). This finding is in agreement with up-regulation of a leishmanolysin gene (gp63) and genes involved in biosynthesis of glycosylinositolphospholipids (GIPL), lipophosphoglycan (LPG) and proteophosphoglycan (PPG) in Pro-Pper. In addition, differences between Pro-Pper and Pro-PNA(-) in genes involved in important cellular processes (e.g. signaling and regulation of gene expression) have been found. CONCLUSIONS: Pro-Pper are significantly more infective than peanut lectin non-agglutinating ones. Therefore, negative selection with PNA is an appropriate method for isolating metacyclic promastigotes in stationary phase of axenic culture but it does not allow reaching the in vitro infectivity levels of Pro-Pper. Indeed, GIPL, LPG and PPG biosynthetic genes together with a gp63 gene are up-regulated in Pro-Pper and interestingly, the correlation coefficient between both transcriptomes in terms of transcript abundance is R (2) = 0.68. This means that the correlation is sufficiently high to consider that both samples are physiologically comparable (i.e. the experiment was correctly designed and performed) and sufficiently low to conclude that important differences in transcript abundance have been found. Therefore, the implications of axenic culture should be evaluated case-by-case in each experimental design even when the stationary phase population in culture is enriched in metacyclic promastigotes by negative selection with PNA.


Subject(s)
Gene Expression Regulation , Genes, Protozoan , Leishmania infantum/genetics , Animals , Biological Evolution , Biological Transport , Cell Line , Energy Metabolism , Gene Expression Profiling , Humans , Leishmania infantum/drug effects , Leishmania infantum/isolation & purification , Leishmania infantum/metabolism , Metalloendopeptidases/genetics , Models, Biological , Peanut Agglutinin/pharmacology , Phlebotomus/parasitology , Protein Interaction Mapping , Proteolysis , Signal Transduction
20.
Nucleic Acids Res ; 44(10): 4855-70, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27131366

ABSTRACT

Leishmania infantum is a protozoan parasite that is phagocytized by human macrophages. The host macrophages kill the parasite by generating oxidative compounds that induce DNA damage. We have identified, purified and biochemically characterized a DNA polymerase θ from L. infantum (LiPolθ), demonstrating that it is a DNA-dependent DNA polymerase involved in translesion synthesis of 8oxoG, abasic sites and thymine glycol lesions. Stably transfected L. infantum parasites expressing LiPolθ were significantly more resistant to oxidative and interstrand cross-linking agents, e.g. hydrogen peroxide, cisplatin and mitomycin C. Moreover, LiPolθ-overexpressing parasites showed an increased infectivity toward its natural macrophage host. Therefore, we propose that LiPolθ is a translesion synthesis polymerase involved in parasite DNA damage tolerance, to confer resistance against macrophage aggression.


Subject(s)
DNA Damage , DNA-Directed DNA Polymerase/metabolism , Leishmania infantum/enzymology , Animals , Cell Nucleus/enzymology , DNA-Directed DNA Polymerase/chemistry , Leishmania infantum/cytology , Leishmania infantum/drug effects , Leishmania infantum/genetics , Mice , Mutagens/toxicity , Oxidative Stress , RAW 264.7 Cells , DNA Polymerase theta
SELECTION OF CITATIONS
SEARCH DETAIL
...