Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 11(32): 6412-8, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26171741

ABSTRACT

Progerin is a mutant form of the nucleoskeletal protein lamin A, and its expression results in the rare premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS). Patients with HGPS demonstrate several characteristic signs of aging including cardiovascular and skeletal dysfunction. Cells from HGPS patients show several nuclear abnormalities including aberrant morphology, nuclear stiffening and loss of epigenetic modifications including heterochromatin territories. However, it is unclear why these changes disproportionately impact mechanically-responsive tissues. Using micropipette aspiration, we show that nuclei in progerin-expressing cells are stiffer than control cells. Conversely, our particle tracking reveals the nuclear interior becomes more compliant in cells from HGPS patients or with progerin expression, as consistent with decreased chromatin condensation as shown previously. Additionally, we find the nuclear interior is less responsive to external mechanical force from shear or compression likely resulting from damped force propagation due to nucleoskeletal stiffening. Collectively our findings suggest that force is similarly transduced into the nuclear interior in normal cells. In HGPS cells a combination of a stiffened nucleoskeleton and softened nuclear interior leads to mechanical irregularities and dysfunction of mechanoresponsive tissues in HGPS patients.


Subject(s)
Cell Nucleus/metabolism , Chromatin/metabolism , Lamin Type A/metabolism , Stress, Mechanical , Cell Nucleus/chemistry , Chromatin/chemistry , Cytoskeleton/chemistry , Cytoskeleton/metabolism , HeLa Cells , Human Umbilical Vein Endothelial Cells , Humans , Lamin Type A/genetics , Mutation , Progeria/genetics
2.
Cell Mol Bioeng ; 8(1): 76-85, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25866589

ABSTRACT

As cancer progresses, cells must adapt to a new and stiffer environment, which can ultimately alter how normal cells within the tumor behave. In turn, these cells are known to further aid tumor progression. Therefore, there is potentially a unique avenue to better understand metastatic potential through single-cell biophysical assays performed on patient-derived cells. Here, we perform biophysical characterization of primary human fibroblastic cells obtained from mammary carcinoma and normal contralateral tissue. Through a series of tissue dissociation, differential centrifugation and trypsinization steps, we isolate an adherent fibroblastic population viable for biomechanical testing. 2D TFM and 3D migration measurements in a collagen matrix show that fibroblasts obtained from patient tumors generate more traction forces and display improved migration potential than their counterparts from normal tissue. Moreover, through the use of an embedded spheroid model, we confirmed the extracellular matrix (ECM) remodeling behavior of primary cells isolated from carcinoma. Overall, correlating biophysical characterization of normal- and carcinoma-derived samples from individual patient along with patient outcome may become a powerful approach to further our comprehension of metastasis and ultimately design drug targets on a patient-specific basis.

3.
Am J Physiol Cell Physiol ; 306(2): C110-20, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24196535

ABSTRACT

The tumor microenvironment is a milieu of heterogeneous architectural features that affect tumor growth and metastatic invasion. Pore size, density, stiffness, and fiber architecture change dramatically from location to location throughout the tumor matrix. While many studies have addressed the effects of two-dimensional extracellular matrix structure and composition on cell migration, less is known about how cancer cells navigate complex, heterogeneous three-dimensional (3D) microenvironments. Mechanical structures such as actin and keratin, part of the cytoskeletal framework, and lamins, part of the nucleoskeletal framework, play a key role in migration and are altered during cancer progression. Recent evidence suggests that these changes in cytoskeletal and nucleoskeletal structures may enable cancer cells to efficiently respond to features such as pore size and stiffness to invade and migrate. Here we discuss the role of cell mechanics and the cytoskeleton in the ability of cells to navigate and respond to 3D matrix features and heterogeneities.


Subject(s)
Cell Movement/physiology , Chemical Phenomena , Cytoskeleton/pathology , Cytoskeleton/physiology , Extracellular Matrix/pathology , Neoplasm Metastasis/pathology , Animals , Extracellular Matrix/metabolism , Humans , Mechanotransduction, Cellular/physiology , Neoplasms/metabolism , Neoplasms/pathology
4.
Biophys J ; 103(12): 2423-31, 2012 Dec 19.
Article in English | MEDLINE | ID: mdl-23260044

ABSTRACT

Extracellular mechanical forces result in changes in gene expression, but it is unclear how cells are able to permanently adapt to new mechanical environments because chemical signaling pathways are short-lived. We visualize force-induced changes in nuclear rheology to examine short- and long-time genome organization and movements. Punctate labels in the nuclear interior of HeLa, human umbilical vein endothelial, and osteosarcoma (Saos-2) cells allow tracking of nuclear movements in cells under varying levels of shear and compressive force. Under adequate shear stress two distinct regimes develop in cells under mechanical stimulation: an initial event of increased intranuclear movement followed by a regime of intranuclear movements that reflect the dose of applied force. At early times there is a nondirectionally oriented response with a small increase in nuclear translocations. After 30 min, there is a significant increase in nuclear movements, which scales with the amount of shear or compressive stress. The similarities in the nuclear response to shear and compressive stress suggest that the nucleus is a mechanosensitive element within the cell. Thus, applied extracellular forces stimulate intranuclear movements, resulting in repositioning of nuclear bodies and the associated chromatin within the nucleus.


Subject(s)
Cell Nucleus/metabolism , Extracellular Space/metabolism , Mechanical Phenomena , Movement , Rheology , Biomechanical Phenomena , Compressive Strength , Genomics , HeLa Cells , Human Umbilical Vein Endothelial Cells/cytology , Humans , Shear Strength , Stress, Mechanical , Time Factors , Transcriptome
5.
PLoS One ; 6(1): e16329, 2011 Jan 27.
Article in English | MEDLINE | ID: mdl-21298013

ABSTRACT

Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists.


Subject(s)
Biological Evolution , Genetic Variation , Genome, Viral/genetics , Mycobacteriophages/genetics , Base Sequence , DNA, Viral/genetics , Geography , Mycobacteriophages/immunology , Mycobacteriophages/isolation & purification , Sequence Analysis, DNA , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...