Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Semin Cell Dev Biol ; 86: 24-35, 2019 02.
Article in English | MEDLINE | ID: mdl-29444460

ABSTRACT

Plasmacytoid pre-dendritic cells (pDC) are a specialized DC population with a great potential to produce large amounts of type I interferon (IFN). pDC are involved in the initiation of antiviral immune responses through their interaction with innate and adaptive immune cell populations. In a context-dependent manner, pDC activation can induce their differentiation into mature DC able to induce both T cell activation or tolerance. In this review, we described pDC functions during immune responses and their implication in the clearance or pathogenicity of human diseases during infection, autoimmunity, allergy and cancer. We discuss recent advances in the field of pDC biology and their implication for future studies.


Subject(s)
Autoimmune Diseases/immunology , Dendritic Cells/immunology , Hypersensitivity/immunology , Autoimmune Diseases/therapy , Humans , Hypersensitivity/therapy , Immunotherapy
2.
Nat Immunol ; 19(1): 63-75, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29203862

ABSTRACT

Innate immune cells adjust to microbial and inflammatory stimuli through a process termed environmental plasticity, which links a given individual stimulus to a unique activated state. Here, we report that activation of human plasmacytoid predendritic cells (pDCs) with a single microbial or cytokine stimulus triggers cell diversification into three stable subpopulations (P1-P3). P1-pDCs (PD-L1+CD80-) displayed a plasmacytoid morphology and specialization for type I interferon production. P3-pDCs (PD-L1-CD80+) adopted a dendritic morphology and adaptive immune functions. P2-pDCs (PD-L1+CD80+) displayed both innate and adaptive functions. Each subpopulation expressed a specific coding- and long-noncoding-RNA signature and was stable after secondary stimulation. P1-pDCs were detected in samples from patients with lupus or psoriasis. pDC diversification was independent of cell divisions or preexisting heterogeneity within steady-state pDCs but was controlled by a TNF autocrine and/or paracrine communication loop. Our findings reveal a novel mechanism for diversity and division of labor in innate immune cells.


Subject(s)
Cytokines/immunology , Dendritic Cells/immunology , Gene Expression/immunology , Immunity, Innate/immunology , Adaptive Immunity/immunology , B7-1 Antigen/immunology , B7-1 Antigen/metabolism , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Dendritic Cells/metabolism , Dendritic Cells/ultrastructure , Gene Expression Profiling/methods , Humans , Interferon Type I/genetics , Interferon Type I/immunology , Interferon Type I/metabolism , Lupus Erythematosus, Systemic/immunology , Microscopy, Electron, Transmission , Orthomyxoviridae/immunology , Psoriasis/immunology
3.
Mol Cancer Ther ; 16(12): 2817-2827, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28947503

ABSTRACT

Hematologic malignancies are rare cancers that develop refractory disease upon patient relapse, resulting in decreased life expectancy and quality of life. DNA repair inhibitors are a promising strategy to treat cancer but are limited by their hematologic toxicity in combination with conventional chemotherapies. Dbait are large molecules targeting the signaling of DNA damage and inhibiting all the double-strand DNA break pathways. Dbait have been shown to sensitize resistant solid tumors to radiotherapy and platinum salts. Here, we analyze the efficacy and lack of toxicity of AsiDNA, a cholesterol form of Dbait, in hematologic malignancies. We show that AsiDNA enters cells via LDL receptors and activates its molecular target, the DNA dependent protein kinase (DNA-PKcs) in 10 lymphoma and leukemia cell lines (Jurkat-E6.1, MT-4, MOLT-4, 174xCEM.T2, Sup-T1, HuT-78, Raji, IM-9, THP-1, and U-937) and in normal primary human PBMCs, resting or activated T cells, and CD34+ progenitors. The treatment with AsiDNA induced necrotic and mitotic cell death in most cancer cell lines and had no effect on blood or bone marrow cells, including immune activation, proliferation, or differentiation. Sensitivity to AsiDNA was independent of p53 status. Survival to combined treatment with conventional therapies (etoposide, cyclophosphamides, vincristine, or radiotherapy) was analyzed by isobolograms and combination index. AsiDNA synergized with all treatments, except vincristine, without increasing their toxicity to normal blood cells. AsiDNA is a novel, potent, and wide-range drug with the potential to specifically increase DNA-damaging treatment toxicity in tumor without adding toxicity in normal hematologic cells or inducing immune dysregulation. Mol Cancer Ther; 16(12); 2817-27. ©2017 AACR.


Subject(s)
DNA Repair/drug effects , Hematologic Neoplasms/blood , Hematologic Neoplasms/genetics , Cell Line, Tumor , DNA Repair/genetics , Hematologic Neoplasms/metabolism , Humans , Signal Transduction
4.
Methods Mol Biol ; 1423: 153-67, 2016.
Article in English | MEDLINE | ID: mdl-27142015

ABSTRACT

Blood represents the most accessible source of human dendritic cells (DCs). We present here a method to isolate three DC subtypes, as identified until now, from peripheral blood: plasmacytoid dendritic cells (pDCs), CD141(+) myeloid DCs, and CD1c(+) myeloid DCs. The method is based on the sequential depletion of non-DCs. First, depletion of granulocytes, erythrocytes, and platelets is obtained by blood centrifugation over a Ficoll gradient. Then, antibodies recognizing non-DCs, combined with magnetic beads, allow enrichment of DCs from peripheral blood mononuclear cells (PBMCs). Finally, enriched DCs are purified and separated into the different subtypes by immunolabeling and fluorescence-activated cell sorting (FACS) using DC-specific surface markers.DC studies might contribute to the comprehension of human immune processes in physiological and pathological conditions. Human blood DCs targeting might be a useful tool to ameliorate inflammatory diseases and improve vaccination strategies.


Subject(s)
Cell Separation/methods , Dendritic Cells/cytology , Leukocytes, Mononuclear/cytology , Antigens, CD1/metabolism , Antigens, Surface/metabolism , Dendritic Cells/immunology , Flow Cytometry , Glycoproteins/metabolism , Humans , Leukocytes, Mononuclear/immunology , Thrombomodulin
6.
J Biol Chem ; 288(23): 16460-16475, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23609449

ABSTRACT

Here we report for the first time the three-dimensional structure of a mannose 6-phosphate receptor homology (MRH) domain present in a protein with enzymatic activity, glucosidase II (GII). GII is involved in glycoprotein folding in the endoplasmic reticulum. GII removes the two innermost glucose residues from the Glc3Man9GlcNAc2 transferred to nascent proteins and the glucose added by UDP-Glc:glycoprotein glucosyltransferase. GII is composed of a catalytic GIIα subunit and a regulatory GIIß subunit. GIIß participates in the endoplasmic reticulum localization of GIIα and mediates in vivo enhancement of N-glycan trimming by GII through its C-terminal MRH domain. We determined the structure of a functional GIIß MRH domain by NMR spectroscopy. It adopts a ß-barrel fold similar to that of other MRH domains, but its binding pocket is the most shallow known to date as it accommodates a single mannose residue. In addition, we identified a conserved residue outside the binding pocket (Trp-409) present in GIIß but not in other MRHs that influences GII glucose trimming activity.


Subject(s)
Endoplasmic Reticulum , Glycoproteins , Protein Folding , Schizosaccharomyces pombe Proteins , Schizosaccharomyces/enzymology , alpha-Glucosidases , Crystallography, X-Ray , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Glycoproteins/chemistry , Glycoproteins/genetics , Glycoproteins/metabolism , Mannose/chemistry , Mannose/genetics , Mannose/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , alpha-Glucosidases/chemistry , alpha-Glucosidases/genetics , alpha-Glucosidases/metabolism
7.
Mol Biol Cell ; 22(11): 1810-23, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21471007

ABSTRACT

Glucosidase II (GII) sequentially removes the two innermost glucose residues from the glycan (Glc(3)Man(9)GlcNAc(2)) transferred to proteins. GII also participates in cycles involving the lectin/chaperones calnexin (CNX) and calreticulin (CRT) as it removes the single glucose unit added to folding intermediates and misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase (UGGT). GII is a heterodimer in which the α subunit (GIIα) bears the active site, and the ß subunit (GIIß) modulates GIIα activity through its C-terminal mannose 6-phosphate receptor homologous (MRH) domain. Here we report that, as already described in cell-free assays, in live Schizosaccharomyces pombe cells a decrease in the number of mannoses in the glycan results in decreased GII activity. Contrary to previously reported cell-free experiments, however, no such effect was observed in vivo for UGGT. We propose that endoplasmic reticulum α-mannosidase-mediated N-glycan demannosylation of misfolded/slow-folding glycoproteins may favor their interaction with the lectin/chaperone CNX present in S. pombe by prolonging the half-lives of the monoglucosylated glycans (S. pombe lacks CRT). Moreover, we show that even N-glycans bearing five mannoses may interact in vivo with the GIIß MRH domain and that the N-terminal GIIß G2B domain is involved in the GIIα-GIIß interaction. Finally, we report that protists that transfer glycans with low mannose content to proteins have nevertheless conserved the possibility of displaying relatively long-lived monoglucosylated glycans by expressing GIIß MRH domains with a higher specificity for glycans with high mannose content.


Subject(s)
Glycoproteins/metabolism , Mannose/metabolism , Schizosaccharomyces/enzymology , alpha-Glucosidases/metabolism , Carbohydrate Sequence , Endoplasmic Reticulum/metabolism , Gene Knockout Techniques , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Half-Life , Hexosyltransferases/metabolism , Molecular Sequence Data , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Folding , Protein Interaction Domains and Motifs , Protein Stability , Protein Structure, Tertiary , Schizosaccharomyces/genetics , alpha-Glucosidases/genetics , alpha-Mannosidase
SELECTION OF CITATIONS
SEARCH DETAIL