Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
PLoS Pathog ; 20(5): e1011749, 2024 May.
Article in English | MEDLINE | ID: mdl-38739648

ABSTRACT

Hepatitis delta virus (HDV) infection represents the most severe form of human viral hepatitis; however, the mechanisms underlying its pathology remain incompletely understood. We recently developed an HDV mouse model by injecting adeno-associated viral vectors (AAV) containing replication-competent HBV and HDV genomes. This model replicates many features of human infection, including liver injury. Notably, the extent of liver damage can be diminished with anti-TNF-α treatment. Here, we found that TNF-α is mainly produced by macrophages. Downstream of the TNF-α receptor (TNFR), the receptor-interacting serine/threonine-protein kinase 1 (RIPK1) serves as a cell fate regulator, playing roles in both cell survival and death pathways. In this study, we explored the function of RIPK1 and other host factors in HDV-induced cell death. We determined that the scaffolding function of RIPK1, and not its kinase activity, offers partial protection against HDV-induced apoptosis. A reduction in RIPK1 expression in hepatocytes through CRISPR-Cas9-mediated gene editing significantly intensifies HDV-induced damage. Contrary to our expectations, the protective effect of RIPK1 was not linked to TNF-α or macrophage activation, as their absence did not alter the extent of damage. Intriguingly, in the absence of RIPK1, macrophages confer a protective role. However, in animals unresponsive to type-I IFNs, RIPK1 downregulation did not exacerbate the damage, suggesting RIPK1's role in shielding hepatocytes from type-I IFN-induced cell death. Interestingly, while the damage extent is similar between IFNα/ßR KO and wild type mice in terms of transaminase elevation, their cell death mechanisms differ. In conclusion, our findings reveal that HDV-induced type-I IFN production is central to inducing hepatocyte death, and RIPK1's scaffolding function offers protective benefits. Thus, type-I IFN together with TNF-α, contribute to HDV-induced liver damage. These insights may guide the development of novel therapeutic strategies to mitigate HDV-induced liver damage and halt disease progression.


Subject(s)
Cytokines , Hepatitis Delta Virus , Hepatocytes , Receptor-Interacting Protein Serine-Threonine Kinases , Animals , Mice , Hepatocytes/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Cytokines/metabolism , Hepatitis Delta Virus/physiology , Hepatitis D/metabolism , Cell Death , Mice, Inbred C57BL , Apoptosis , Mice, Knockout , Humans , Tumor Necrosis Factor-alpha/metabolism , Disease Models, Animal
2.
J Biol Eng ; 18(1): 34, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745236

ABSTRACT

BACKGROUND: Several treatments for genetic diseases utilizing recombinant adeno-associated viruses (AAVs) have recently gained approval. However, the development of a greater number of therapeutic AAVs is constrained by certain limitations. While extensive efforts have concentrated on screening AAV genetic libraries, an alternative strategy involves modifying the AAV capsid by attaching various moieties. The capsid of AAV plays a pivotal role in transducing target cells and evading immune responses, making modifications a key avenue for engineering improved variants. RESULTS: In our study, we replaced specific AAV9 capsid residues with an unnatural amino acid bearing a bioorthogonal group, identifying four positions with no adverse impact on production. Utilizing click chemistry, we attached varying proportions of Cy5.5 to these positions, allowing us to assess the impact of these modifications on AAV9 infectivity in cultured cells. Our findings reveal that both the position and degree of capsid modification significantly affect AAV transduction. While higher amounts of attached molecules lead to an increased number of AAV genomes within cells, this does not positively impact transgene expression. Conversely, a negative impact on transgene expression is observed when the AAV capsid is highly modified, with the degree of this effect associated with the modified residue. CONCLUSION: Careful control of both the degree and specific position of capsid modifications is crucial for optimizing transduction efficiency and minimizing undesired effects on transgene expression. These results underscore the importance of precision in AAV capsid modification to achieve optimal transduction efficiency while mitigating potential drawbacks on transgene expression.

3.
PLoS One ; 19(5): e0301328, 2024.
Article in English | MEDLINE | ID: mdl-38713657

ABSTRACT

Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting approximately 80% of all human proteins. The human essential X-linked gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. There is extensive genetic variation in humans with missense, splice-site, and C-terminal frameshift variants in NAA10. In mice, Naa10 is not an essential gene, as there exists a paralogous gene, Naa12, that substantially rescues Naa10 knockout mice from embryonic lethality, whereas double knockouts (Naa10-/Y Naa12-/-) are embryonic lethal. However, the phenotypic variability in the mice is nonetheless quite extensive, including piebaldism, skeletal defects, small size, hydrocephaly, hydronephrosis, and neonatal lethality. Here we replicate these phenotypes with new genetic alleles in mice, but we demonstrate their modulation by genetic background and environmental effects. We cannot replicate a prior report of "maternal effect lethality" for heterozygous Naa10-/X female mice, but we do observe a small amount of embryonic lethality in the Naa10-/y male mice on the inbred genetic background in this different animal facility.


Subject(s)
Mice, Knockout , N-Terminal Acetyltransferase A , N-Terminal Acetyltransferase E , Animals , N-Terminal Acetyltransferase A/genetics , N-Terminal Acetyltransferase A/metabolism , N-Terminal Acetyltransferase E/genetics , N-Terminal Acetyltransferase E/metabolism , Mice , Female , Male , Phenotype , Genetic Background , Maternal Inheritance/genetics , Mice, Inbred C57BL
4.
Viruses ; 16(3)2024 02 28.
Article in English | MEDLINE | ID: mdl-38543745

ABSTRACT

Hepatitis D virus (HDV) infection represents the most severe form of chronic viral hepatitis. We have shown that the delivery of HDV replication-competent genomes to the hepatocytes using adeno-associated virus (AAV-HDV) as gene delivery vehicles offers a unique platform to investigate the molecular aspects of HDV and associated liver damage. For the purpose of this study, we generated HDV genomes modified by site-directed mutagenesis aimed to (i) prevent some post-translational modifications of HDV antigens (HDAgs) such as large-HDAg (L-HDAg) isoprenylation or short-HDAg (S-HDAg) phosphorylation; (ii) alter the localization of HDAgs within the subcellular compartments; and (iii) inhibit the right conformation of the delta ribozyme. First, the different HDV mutants were tested in vitro using plasmid-transfected Huh-7 cells and then in vivo in C57BL/6 mice using AAV vectors. We found that Ser177 phosphorylation and ribozymal activity are essential for HDV replication and HDAg expression. Mutations of the isoprenylation domain prevented the formation of infectious particles and increased cellular toxicity and liver damage. Furthermore, altering HDAg intracellular localization notably decreased viral replication, though liver damage remained unchanged versus normal HDAg distribution. In addition, a mutation in the nuclear export signal impaired the formation of infectious viral particles. These findings contribute valuable insights into the intricate mechanisms of HDV biology and have implications for therapeutic considerations.


Subject(s)
Hepatitis Delta Virus , RNA, Viral , Animals , Mice , Hepatitis delta Antigens/genetics , Hepatitis delta Antigens/metabolism , RNA, Viral/metabolism , Mice, Inbred C57BL , Virus Replication/genetics , Protein Processing, Post-Translational , Liver/metabolism
5.
bioRxiv ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37163119

ABSTRACT

Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting approximately 80% of all human proteins. The human essential X-linked gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. There is extensive genetic variation in humans with missense, splice-site, and C-terminal frameshift variants in NAA10. In mice, Naa10 is not an essential gene, as there exists a paralogous gene, Naa12, that substantially rescues Naa10 knockout mice from embryonic lethality, whereas double knockouts (Naa10-/Y Naa12-/-) are embryonic lethal. However, the phenotypic variability in the mice is nonetheless quite extensive, including piebaldism, skeletal defects, small size, hydrocephaly, hydronephrosis, and neonatal lethality. Here we replicate these phenotypes with new genetic alleles in mice, but we demonstrate their modulation by genetic background and environmental effects. We cannot replicate a prior report of "maternal effect lethality" for heterozygous Naa10-/X female mice, but we do observe a small amount of embryonic lethality in the Naa10-/Y male mice on the inbred genetic background in this different animal facility.

6.
Int J Mol Sci ; 24(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37240070

ABSTRACT

Alpha-aminoterminal acetyltransferase B (NatB) is a critical enzyme responsible for acetylating the aminoterminal end of proteins, thereby modifying approximately 21% of the proteome. This post-translational modification impacts protein folding, structure, stability, and interactions between proteins which, in turn, play a crucial role in modulating several biological functions. NatB has been widely studied for its role in cytoskeleton function and cell cycle regulation in different organisms, from yeast to human tumor cells. In this study, we aimed to understand the biological importance of this modification by inactivating the catalytic subunit of the NatB enzymatic complex, Naa20, in non-transformed mammal cells. Our findings demonstrate that depletion of NAA20 results in decreased cell cycle progression and DNA replication initiation, ultimately leading to the senescence program. Furthermore, we have identified NatB substrates that play a role in cell cycle progression, and their stability is compromised when NatB is inactivated. These results underscore the significance of N-terminal acetylation by NatB in regulating cell cycle progression and DNA replication.


Subject(s)
Saccharomyces cerevisiae Proteins , Animals , Humans , Saccharomyces cerevisiae Proteins/metabolism , Catalytic Domain , Saccharomyces cerevisiae/metabolism , Protein Processing, Post-Translational , DNA Replication , Acetylation , Acetyltransferases/metabolism , Mammals/metabolism
7.
Int J Mol Sci ; 23(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36499263

ABSTRACT

Citrullinemia type I (CTLN1) is a rare autosomal recessive disorder caused by mutations in the gene encoding argininosuccinate synthetase 1 (ASS1) that catalyzes the third step of the urea cycle. CTLN1 patients suffer from impaired elimination of nitrogen, which leads to neurotoxic levels of circulating ammonia and urea cycle byproducts that may cause severe metabolic encephalopathy, death or irreversible brain damage. Standard of care (SOC) of CTLN1 consists of daily nitrogen-scavenger administration, but patients remain at risk of life-threatening decompensations. We evaluated the therapeutic efficacy of a recombinant adeno-associated viral vector carrying the ASS1 gene under the control of a liver-specific promoter (VTX-804). When administered to three-week-old CTLN1 mice, all the animals receiving VTX-804 in combination with SOC gained body weight normally, presented with a normalization of ammonia and reduction of citrulline levels in circulation, and 100% survived for 7 months. Similar to what has been observed in CTLN1 patients, CTLN1 mice showed several behavioral abnormalities such as anxiety, reduced welfare and impairment of innate behavior. Importantly, all clinical alterations were notably improved after treatment with VTX-804. This study demonstrates the potential of VTX-804 gene therapy for future clinical translation to CTLN1 patients.


Subject(s)
Ammonia , Citrullinemia , Mice , Animals , Nitrogen , Citrullinemia/genetics , Citrullinemia/therapy , Argininosuccinate Synthase/genetics , Argininosuccinate Synthase/metabolism , Genetic Therapy , Urea/metabolism
8.
Hum Gene Ther ; 32(19-20): 1242-1250, 2021 10.
Article in English | MEDLINE | ID: mdl-34555962

ABSTRACT

The efficiency of recombinant adeno-associated virus (AAV) vectors transducing host cells is very low, limiting their therapeutic potential in patients. There are several cellular pathways interacting and interfering with the journey of the AAV from the cell surface to the nucleus, opening the possibility to enhance AAV transduction by modifying these interactions. In this study, we explored the results of AAV hepatic transduction when different mammalian target of rapamycin (mTOR) inhibitors, rapamycin, MLN0128, RapaLink-1, were used in preconditioned juvenile and adult mice. We confirmed rapamycin as an AAV hepatic transduction enhancer in juvenile and adult mice; however, RapaLink-1, a stronger mTOR inhibitor and a clear hepatic autophagy inducer, had no positive effect. Moreover, MLN0128 reduced AAV hepatic transduction. Therefore, our results show a complex interaction between the mTOR pathway and AAV-mediated hepatic transduction and indicate that mTOR inhibition is not a straightforward strategy for improving AAV transduction. More studies are necessary to elucidate the molecular mechanisms involved in the positive and negative effects of mTOR inhibitors on AAV transduction efficiency.


Subject(s)
Dependovirus , TOR Serine-Threonine Kinases , Animals , Autophagy , Dependovirus/genetics , Genetic Vectors/genetics , MTOR Inhibitors , Mice , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/pharmacology , Transduction, Genetic
9.
JHEP Rep ; 3(4): 100300, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34159305

ABSTRACT

Gene therapy is becoming an increasingly valuable tool to treat many genetic diseases with no or limited treatment options. This is the case for hundreds of monogenic metabolic disorders of hepatic origin, for which liver transplantation remains the only cure. Furthermore, the liver contains 10-15% of the body's total blood volume, making it ideal for use as a factory to secrete proteins into the circulation. In recent decades, an expanding toolbox has become available for liver-directed gene delivery. Although viral vectors have long been the preferred approach to target hepatocytes, an increasing number of non-viral vectors are emerging as highly efficient vehicles for the delivery of genetic material. Herein, we review advances in gene delivery vectors targeting the liver and more specifically hepatocytes, covering strategies based on gene addition and gene editing, as well as the exciting results obtained with the use of RNA as a therapeutic molecule. Moreover, we will briefly summarise some of the limitations of current liver-directed gene therapy approaches and potential ways of overcoming them.

10.
J Inherit Metab Dis ; 44(6): 1369-1381, 2021 11.
Article in English | MEDLINE | ID: mdl-33896013

ABSTRACT

Phenylketonuria (PKU) is the most common inborn error of metabolism of the liver, and results from mutations of both alleles of the phenylalanine hydroxylase gene (PAH). As such, it is a suitable target for gene therapy via gene delivery with a recombinant adeno-associated virus (AAV) vector. Here we use the synthetic AAV vector Anc80 via systemic administration to deliver a functional copy of a codon-optimized human PAH gene, with or without an intron spacer, to the Pahenu2 mouse model of PKU. Dose-dependent transduction of the liver and expression of PAH mRNA were present with both vectors, resulting in significant and durable reduction of circulating phenylalanine, reaching near control levels in males. Coat color of treated Pahenu2 mice reflected an increase in pigmentation from brown to the black color of control animals, further indicating functional restoration of phenylalanine metabolism and its byproduct melanin. There were no adverse effects associated with administration of AAV up to 5 × 1012 VG/kg, the highest dose tested. Only minor and/or transient variations in some liver enzymes were observed in some of the AAV-dosed animals which were not associated with pathology findings in the liver. Finally, there was no impact on cell turnover or apoptosis as evaluated by Ki-67 and TUNEL staining, further supporting the safety of this approach. This study demonstrates the therapeutic potential of AAV Anc80 to safely and durably cure PKU in a mouse model, supporting development for clinical consideration.


Subject(s)
Dependovirus/genetics , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Phenylalanine Hydroxylase/genetics , Phenylketonurias/therapy , Animals , Cell Line , DNA, Recombinant/administration & dosage , Disease Models, Animal , Female , Genetic Vectors/genetics , Hair Color , Humans , Injections, Intravenous , Liver/enzymology , Male , Mice , Mice, Inbred C57BL , Phenylalanine/blood , Phenylalanine Hydroxylase/immunology , Phenylalanine Hydroxylase/metabolism , Transduction, Genetic/methods
11.
Biomedicines ; 9(3)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809425

ABSTRACT

The global burden of chronic kidney disease (CKD) is increasing every year and represents a great cost for public healthcare systems, as the majority of these diseases are progressive. Therefore, there is an urgent need to develop new therapies. Oligonucleotide-based drugs are emerging as novel and promising alternatives to traditional drugs. Their expansion corresponds with new knowledge regarding the molecular basis underlying CKD, and they are already showing encouraging preclinical results, with two candidates being evaluated in clinical trials. However, despite recent technological advances, efficient kidney delivery remains challenging, and the presence of off-targets and side-effects precludes development and translation to the clinic. In this review, we provide an overview of the various oligotherapeutic strategies used preclinically, emphasizing the most recent findings in the field, together with the different strategies employed to achieve proper kidney delivery. The use of different nanotechnological platforms, including nanocarriers, nanoparticles, viral vectors or aptamers, and their potential for the development of more specific and effective treatments is also outlined.

12.
Viruses ; 13(5)2021 04 28.
Article in English | MEDLINE | ID: mdl-33925087

ABSTRACT

Hepatitis delta virus (HDV) infection causes the most severe form of viral hepatitis, but little is known about the molecular mechanisms involved. We have recently developed an HDV mouse model based on the delivery of HDV replication-competent genomes using adeno-associated vectors (AAV), which developed a liver pathology very similar to the human disease and allowed us to perform mechanistic studies. We have generated different AAV-HDV mutants to eliminate the expression of HDV antigens (HDAgs), and we have characterized them both in vitro and in vivo. We confirmed that S-HDAg is essential for HDV replication and cannot be replaced by L-HDAg or host cellular proteins, and that L-HDAg is essential to produce the HDV infectious particle and inhibits its replication. We have also found that lack of L-HDAg resulted in the increase of S-HDAg expression levels and the exacerbation of liver damage, which was associated with an increment in liver inflammation but did not require T cells. Interestingly, early expression of L-HDAg significantly ameliorated the liver damage induced by the mutant expressing only S-HDAg. In summary, the use of AAV-HDV represents a very attractive platform to interrogate in vivo the role of viral components in the HDV life cycle and to better understand the mechanism of HDV-induced liver pathology.


Subject(s)
Dependovirus/genetics , Genetic Vectors/genetics , Hepatitis D/virology , Hepatitis Delta Virus/physiology , Virus Replication , Animals , Cell Line , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Genetic Engineering , Hepatitis D/pathology , Humans , In Vitro Techniques , Liver/metabolism , Liver/pathology , Liver/virology , Mice , Mutation
13.
J Mol Biol ; 432(22): 5889-5901, 2020 11 06.
Article in English | MEDLINE | ID: mdl-32976911

ABSTRACT

Protein lifespan is regulated by co-translational modification by several enzymes, including methionine aminopeptidases and N-alpha-aminoterminal acetyltransferases. The NatB enzymatic complex is an N-terminal acetyltransferase constituted by two subunits, NAA20 and NAA25, whose interaction is necessary to avoid NAA20 catalytic subunit degradation. We found that deletion of the first five amino acids of hNAA20 or fusion of a peptide to its amino terminal end abolishes its interaction with hNAA25. Substitution of the second residue of hNAA20 with amino acids with small, uncharged side-chains allows NatB enzymatic complex formation. However, replacement by residues with large or charged side-chains interferes with its hNAA25 interaction, limiting functional NatB complex formation. Comparison of NAA20 eukaryotic sequences showed that the residue following the initial methionine, an amino acid with a small uncharged side-chain, has been evolutionarily conserved. We have confirmed the relevance of second amino acid characteristics of NAA20 in NatB enzymatic complex formation in Drosophila melanogaster. Moreover, we have evidenced the significance of NAA20 second residue in Saccharomyces cerevisiae using different NAA20 versions to reconstitute NatB formation in a yNAA20-KO yeast strain. The requirement in humans and in fruit flies of an amino acid with a small uncharged side-chain following the initial methionine of NAA20 suggests that methionine aminopeptidase action may be necessary for the NAA20 and NAA25 interaction. We showed that inhibition of MetAP2 expression blocked hNatB enzymatic complex formation by retaining the initial methionine of NAA20. Therefore, NatB-mediated protein N-terminal acetylation is dependent on methionine aminopeptidase, providing a regulatory mechanism for protein N-terminal maturation.


Subject(s)
N-Terminal Acetyltransferase B/chemistry , N-Terminal Acetyltransferase B/metabolism , Acetylation , Acetyltransferases , Animals , Catalytic Domain , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Gene Knockout Techniques , Humans , N-Terminal Acetyltransferase B/genetics , Protein Biosynthesis , Protein Processing, Post-Translational , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
14.
JHEP Rep ; 2(3): 100098, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32382723

ABSTRACT

BACKGROUND & AIMS: HDV infection induces the most severe form of human viral hepatitis. However, the specific reasons for the severity of the disease remain unknown. Recently, we developed an HDV replication mouse model in which, for the first time, liver damage was detected. METHODS: HDV and HBV replication-competent genomes and HDV antigens were delivered to mouse hepatocytes using adeno-associated vectors (AAVs). Aminotransferase elevation, liver histopathology, and hepatocyte death were evaluated and the immune infiltrate was characterized. Liver transcriptomic analysis was performed. Mice deficient for different cellular and molecular components of the immune system, as well as depletion and inhibition studies, were employed to elucidate the causes of HDV-mediated liver damage. RESULTS: AAV-mediated HBV/HDV coinfection caused hepatocyte necrosis and apoptosis. Activated T lymphocytes, natural killer cells, and proinflammatory macrophages accounted for the majority of the inflammatory infiltrate. However, depletion studies and the use of different knockout mice indicated that neither T cells, natural killer cells nor macrophages were necessary for HDV-induced liver damage. Transcriptomic analysis revealed a strong activation of type I and II interferon (IFN) and tumor necrosis factor (TNF)-α pathways in HBV/HDV-coinfected mice. While the absence of IFN signaling had no effect, the use of a TNF-α antagonist resulted in a significant reduction of HDV-associated liver injury. Furthermore, hepatic expression of HDAg resulted in the induction of severe liver damage, which was T cell- and TNF-α-independent. CONCLUSIONS: Both host (TNF-α) and viral (HDV antigens) factors play a relevant role in HDV-induced liver damage. Importantly, pharmacological inhibition of TNF-α may offer an attractive strategy to aid control of HDV-induced acute liver damage. LAY SUMMARY: Chronic hepatitis delta constitutes the most severe form of viral hepatitis. There is limited data on the mechanism involved in hepatitis delta virus (HDV)-induced liver pathology. Our data indicate that a cytokine (TNF-α) and HDV antigens play a relevant role in HDV-induced liver damage.

15.
Neurobiol Dis ; 137: 104781, 2020 04.
Article in English | MEDLINE | ID: mdl-31991248

ABSTRACT

Alpha-synuclein (aSyn) protein levels are sufficient to drive Parkinson's disease (PD) and other synucleinopathies. Despite the biomedical/therapeutic potential of aSyn protein regulation, little is known about mechanisms that limit/control aSyn levels. Here, we investigate the role of a post-translational modification, N-terminal acetylation, in aSyn neurotoxicity. N-terminal acetylation occurs in all aSyn molecules and has been proposed to determine its lipid binding and aggregation capacities; however, its effect in aSyn stability/neurotoxicity has not been evaluated. We generated N-terminal mutants that alter or block physiological aSyn N-terminal acetylation in wild-type or pathological mutant E46K aSyn versions and confirmed N-terminal acetylation status by mass spectrometry. By optical pulse-labeling in living primary neurons we documented a reduced half-life and accumulation of aSyn N-terminal mutants. To analyze the effect of N-terminal acetylation mutants in neuronal toxicity we took advantage of a neuronal model where aSyn toxicity was scored by longitudinal survival analysis. Salient features of aSyn neurotoxicity were previously investigated with this approach. aSyn-dependent neuronal death was recapitulated either by higher aSyn protein levels in the case of WT aSyn, or by the combined effect of protein levels and enhanced neurotoxicity conveyed by the E46K mutation. aSyn N-terminal mutations decreased E46K aSyn-dependent neuronal death both by reducing protein levels and, importantly, by reducing the intrinsic E46K aSyn toxicity, being the D2P mutant the least toxic. Together, our results illustrate that the N-terminus determines, most likely through its acetylation, aSyn protein levels and toxicity, identifying this modification as a potential therapeutic target.


Subject(s)
Neurons/metabolism , Parkinson Disease/genetics , Protein Aggregation, Pathological/metabolism , alpha-Synuclein/metabolism , Acetylation , Cell Death/genetics , Humans , Mutation/genetics , Parkinson Disease/metabolism , Protein Aggregation, Pathological/genetics , Protein Processing, Post-Translational/genetics , Protein Stability
17.
Int J Biochem Cell Biol ; 95: 35-42, 2018 02.
Article in English | MEDLINE | ID: mdl-29233735

ABSTRACT

The pro-apoptotic Bax protein is the main effector of mitochondrial permeabilization during apoptosis. Bax is controlled at several levels, including post-translational modifications such as phosphorylation and S-palmitoylation. However, little is known about the contribution of other protein modifications to Bax activity. Here, we used heterologous expression of human Bax in yeast to study the involvement of N-terminal acetylation by yNaa20p (yNatB) on Bax function. We found that human Bax is N-terminal (Nt-)acetylated by yNaa20p and that Nt-acetylation of Bax is essential to maintain Bax in an inactive conformation in the cytosol of yeast and Mouse Embryonic Fibroblast (MEF) cells. Bax accumulates in the mitochondria of yeast naa20Δ and Naa25-/- MEF cells, but does not promote cytochrome c release, suggesting that an additional step is required for full activation of Bax. Altogether, our results show that Bax N-terminal acetylation by NatB is involved in its mitochondrial targeting.


Subject(s)
Apoptosis , Cytosol/metabolism , Mitochondria/metabolism , N-Terminal Acetyltransferase B/metabolism , Protein Processing, Post-Translational , Saccharomyces cerevisiae Proteins/metabolism , bcl-2-Associated X Protein/metabolism , Acetylation , Animals , Cells, Cultured , Crosses, Genetic , Cytosol/enzymology , Embryo, Mammalian/cytology , Gene Deletion , Humans , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mitochondria/enzymology , N-Terminal Acetyltransferase B/genetics , Protein Conformation , Protein Transport , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Saccharomyces cerevisiae , Substrate Specificity , bcl-2-Associated X Protein/chemistry , bcl-2-Associated X Protein/genetics
18.
J Hepatol ; 67(4): 669-679, 2017 10.
Article in English | MEDLINE | ID: mdl-28527664

ABSTRACT

BACKGROUND & AIMS: Studying hepatitis delta virus (HDV) and developing new treatments is hampered by the limited availability of small animal models. Herein, a description of a robust mouse model of HDV infection that mimics several important characteristics of the human disease is presented. METHODS: HDV and hepatitis B virus (HBV) replication competent genomes were delivered to the mouse liver using adeno-associated viruses (AAV; AAV-HDV and AAV-HBV). Viral load, antigen expression and genomes were quantified at different time points after AAV injection. Furthermore, liver pathology, genome editing, and the activation of the innate immune response were evaluated. RESULTS: AAV-HDV infection initiated HDV replication in mouse hepatocytes. Genome editing was confirmed by the presence of small and large HDV antigens and sequencing. Viral replication was detected for 45days, even after the AAV-HDV vector had almost disappeared. In the presence of HBV, HDV infectious particles were detected in serum. Furthermore, as observed in patients, co-infection was associated with the reduction of HBV antigen expression and the onset of liver damage that included the alteration of genes involved in the development of liver pathologies. HDV replication induced a sustained type I interferon response, which was significantly reduced in immunodeficient mice and almost absent in mitochondrial antiviral signaling protein (MAVS)-deficient mice. CONCLUSION: The animal model described here reproduces important characteristics of human HDV infection and provides a valuable tool for characterizing the viral infection and for developing new treatments. Furthermore, MAVS was identified as a main player in HDV detection and adaptive immunity was found to be involved in the amplification of the innate immune response. Lay summary: Co-infection with hepatitis B and D virus (HBV and HDV, respectively) often causes a more severe disease condition than HBV alone. Gaining more insight into HDV and developing new treatments is hampered by limited availability of adequate immune competent small animal models and new ones are needed. Here, a mouse model of HDV infection is described, which mimics several important characteristics of the human disease, such as the initiation and maintenance of replication in murine hepatocytes, genome editing and, in the presence of HBV, generation of infectious particles. Lastly, the involvement of an adaptive immunity and the intracellular signaling molecule MAVS in mounting a strong and lasting innate response was shown. Thus, our model serves as a useful tool for the investigation of HDV biology and new treatments.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Hepatitis D/immunology , Interferon-beta/biosynthesis , Adaptive Immunity , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Line , Coinfection/immunology , Coinfection/pathology , Coinfection/virology , Dependovirus/genetics , Disease Models, Animal , Genome, Viral , Hepatitis B/complications , Hepatitis B/immunology , Hepatitis B/virology , Hepatitis B Antigens/metabolism , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Hepatitis D/complications , Hepatitis D/virology , Hepatitis Delta Virus/genetics , Hepatitis Delta Virus/immunology , Hepatitis Delta Virus/physiology , Hepatitis delta Antigens/metabolism , Humans , Immunity, Innate , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Models, Immunological , Signal Transduction/immunology , Virus Replication
19.
Oncotarget ; 8(25): 40967-40981, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28498797

ABSTRACT

The identification of new targets for systemic therapy of hepatocellular carcinoma (HCC) is an urgent medical need. Recently, we showed that hNatB catalyzes the N-α-terminal acetylation of 15% of the human proteome and that this action is necessary for proper actin cytoskeleton structure and function. In tumors, cytoskeletal changes influence motility, invasion, survival, cell growth and tumor progression, making the cytoskeleton a very attractive antitumor target. Here, we show that hNatB subunits are upregulated in in over 59% HCC tumors compared to non-tumor tissue and that this upregulation is associated with microscopic vascular invasion. We found that hNatB silencing blocks proliferation and tumor formation in HCC cell lines in association with hampered DNA synthesis and impaired progression through the S and the G2/M phases. Growth inhibition is mediated by the degradation of two hNatB substrates, tropomyosin and CDK2, which occurs when these proteins lack N-α-terminal acetylation. In addition, hNatB inhibition disrupts the actin cytoskeleton, focal adhesions and tight/adherens junctions, abrogating two proliferative signaling pathways, Hippo/YAP and ERK1/2. Therefore, inhibition of NatB activity represents an interesting new approach to treating HCC by blocking cell proliferation and disrupting actin cytoskeleton function.


Subject(s)
Adherens Junctions/metabolism , Carcinoma, Hepatocellular/metabolism , Focal Adhesions/metabolism , Liver Neoplasms/metabolism , N-Terminal Acetyltransferase B/genetics , N-Terminal Acetyltransferase B/metabolism , Tropomyosin/metabolism , Acetylation , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Cycle Checkpoints , Cell Movement , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Transfection
20.
Methods Mol Biol ; 1506: 179-192, 2017.
Article in English | MEDLINE | ID: mdl-27830553

ABSTRACT

Hepatocyte transplantation is the best approach to maintain and propagate differentiated hepatocytes from different species. Host liver has to be adapted for transplanted hepatocytes productive engraftment and proliferation being required a chronic liver injury to eliminate host hepatocytes and provide a proliferative advantage to the transplanted hepatocytes. Most valuable mouse models for xenograft hepatocyte transplantation are based on genetically modified animals to cause a chronic liver damage and to limit host hepatocyte regeneration potential. We present a methodology that generates a chronic liver damage and can be applied to any host mouse strain and animal species based on the inoculation of a recombinant adenovirus to express herpes simplex thymidine kinase in host hepatocytes sensitizing them to ganciclovir treatment. This causes a prolonged liver damage that allows hepatocyte transplantation and generation of regenerative nodules in recipient mouse liver integrated by transplanted cells and host sinusoidal. Obtained chimeric animals maintain functional chimeric nodules for several weeks, ready to be used in any study.


Subject(s)
Adenoviridae/genetics , Cell Transplantation/methods , Hepatocytes/transplantation , Liver Regeneration/drug effects , Liver/physiology , Transplantation Conditioning/methods , Animals , Cell Separation/methods , Cell Transplantation/adverse effects , Cell Transplantation/instrumentation , Chemical and Drug Induced Liver Injury, Chronic , Disease Models, Animal , Ganciclovir/toxicity , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Simplexvirus/genetics , Thymidine Kinase/genetics , Transduction, Genetic/methods , Transplantation Chimera/physiology , Transplantation Chimera/surgery , Transplantation, Heterologous/adverse effects , Transplantation, Heterologous/methods , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...