Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 12(10)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37887006

ABSTRACT

We report on a highly virulent, multidrug-resistant strain of Enterococcus faecalis IRMC827A that was found colonizing a long-term male patient at a tertiary hospital in Khobar, Saudi Arabia. The E. faecalis IRMC827A strain carries several antimicrobial drug resistance genes and harbours mobile genetic elements such as Tn6009, which is an integrative conjugative element that can transfer resistance genes between bacteria and ISS1N via an insertion sequence. Whole-genome-sequencing-based antimicrobial susceptibility testing on strains from faecal samples revealed that the isolate E. faecalis IRMC827A is highly resistant to a variety of antibiotics, including tetracycline, doxycycline, minocycline, dalfopristin, virginiamycin, pristinamycin, chloramphenicol, streptomycin, clindamycin, lincomycin, trimethoprim, nalidixic acid and ciprofloxacin. The isolate IRMC827A carries several virulence factors that are significantly associated with adherence, biofilm formation, sortase-assembled pili, manganese uptake, antiphagocytosis, and spreading factor of multidrug resistance. The isolate also encompasses two mutations (G2576T and G2505A) in the 23S rRNA gene associated with linezolid resistance and three more mutations (gyrA p.S83Y, gyrA p.D759N and parC p.S80I) of the antimicrobial resistance phenotype. The findings through next-generation sequencing on the resistome, mobilome and virulome of the isolate in the study highlight the significance of monitoring multidrug-resistant E. faecalis colonization and infection in hospitalized patients. As multidrug-resistant E. faecalis is a serious pathogen, it is particularly difficult to treat and can cause fatal infections. It is important to have quick and accurate diagnostic tests for multidrug-resistant E. faecalis, to track the spread of multidrug-resistant E. faecalis in healthcare settings, and to improve targeted interventions to stop its spread. Further research is necessary to develop novel antibiotics and treatment strategies for multidrug-resistant E. faecalis infections.

2.
Semin Cancer Biol ; 86(Pt 2): 1056-1065, 2022 11.
Article in English | MEDLINE | ID: mdl-34843989

ABSTRACT

Colorectal cancer is one of the most aggressive types of cancer with about two million new cases and one million deaths in 2020. The side effects of the available chemotherapies and the possibility of developing resistance against treatment highlight the importance of developing new therapeutic options. The development in the field of nanotechnology have introduced the application of nanoparticles (NPs) as a promising approach in the diagnosis and treatments of colorectal cancer and other types of cancer. Gold nanoparticles (AuNPs) are currently one of the most studied materials as they possess unique tunable properties allowing them to play a role in colorectal cancer bioimaging, diagnosis, and therapy. The high surface-to-volume ratio of AuNPs mediates their utilization in drug delivery as well as functionalization to provide specific targeting. Moreover, depending on their physical properties (size, shape), AuNPs can be modified to fit the intended application. However, there are contradictory results around the pharmacokinetics of AuNPs including their biodistribution, clearance, and toxicity. This variation of opinions is most likely due to the development of different AuNPs that vary in shape, size, and surface chemistry, in addition to the conditions under which each research was carried out. The conflicting data represent a challenge in the clinical use of AuNPs suggesting the need to understand the toxicity, fate, and long-term exposure of AuNPs in vivo. Thus, there is an unmet need for the establishment of a publicly available data base for extensive analysis. In this review, we discuss the recent advances in AuNP applications in the treatment and diagnosis of colorectal cancer, mechanisms of action, and clinical challenges.


Subject(s)
Colonic Neoplasms , Metal Nanoparticles , Humans , Gold/chemistry , Gold/pharmacokinetics , Gold/toxicity , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Tissue Distribution , Drug Delivery Systems , Colonic Neoplasms/diagnosis , Colonic Neoplasms/drug therapy
3.
Vaccines (Basel) ; 9(10)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34696231

ABSTRACT

The thymus is the main lymphoid organ that regulates the immune and endocrine systems by controlling thymic cell proliferation and differentiation. The gland is a primary lymphoid organ responsible for generating mature T cells into CD4+ or CD8+ single-positive (SP) T cells, contributing to cellular immunity. Regarding humoral immunity, the thymic plasma cells almost exclusively secrete IgG1 and IgG3, the two main complement-fixing effector IgG subclasses. Deformity in the thymus can lead to inflammatory diseases. Hassall's corpuscles' epithelial lining produces thymic stromal lymphopoietin, which induces differentiation of CDs thymocytes into regulatory T cells within the thymus medulla. Thymic B lymphocytes produce immunoglobulins and immunoregulating hormones, including thymosin. Modulation in T cell and naive T cells decrement due to thymus deformity induce alteration in the secretion of various inflammatory factors, resulting in multiple diseases. Influenza virus activates thymic CD4+ CD8+ thymocytes and a large amount of IFNγ. IFNs limit virus spread, enhance macrophages' phagocytosis, and promote the natural killer cell restriction activity against infected cells. Th2 lymphocytes-produced cytokine IL-4 can bind to antiviral INFγ, decreasing the cell susceptibility and downregulating viral receptors. COVID-19 epitopes (S, M, and N proteins) with ≥90% identity to the SARS-CoV sequence have been predicted. These epitopes trigger immunity for antibodies production. Boosting the immune system by improving thymus function can be a therapeutic strategy for preventing virus-related diseases. This review aims to summarize the endocrine-immunoregulatory functions of the thymus and the underlying mechanisms in the prevention of COVID-19.

5.
Saudi J Biol Sci ; 28(3): 1978-1989, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33519278

ABSTRACT

SARS-CoV-2 is a type of Betacoronaviruses responsible for COVID-19 pandemic disease, with more than 1.745 million fatalities globally as of December-2020. Genetically, it is considered the second largest genome of all RNA viruses with a 5' cap and 3' poly-A tail. Phylogenetic analyses of coronaviruses reveal that SARS-CoV-2 is genetically closely related to the Bat-SARS Like-Corona virus (Bat-SL-Cov) with 96% whole-genome identity. SARS-CoV-2 genome consists of 15 ORFs coded into 29 proteins. At the 5' terminal of the genome, we have ORF1ab and ORF1a, which encode the 1ab and 1a polypeptides that are proteolytically cleaved into 16 different nonstructural proteins (NSPs). The 3' terminal of the genome represents four structural (spike, envelope, matrix, and nucleocapsid) and nine accessory (3a, 3b, 6, 7a, 7b, 8b, 9a, 9b, and orf10) proteins. As the number of COVID-19 patients increases dramatically worldwide, there is an urgent need to find a quick and sensitive diagnostic tool for controlling the outbreak of SARS-CoV-2 in the community. Today, molecular testing methods utilizing viral genetic material (e.g., PCR) represent the crucial diagnostic tool for the SARS-CoV-2 virus despite its low sensitivity in the early stage of viral infection. This review summarizes the genome composition and genetic characterization of the SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL
...