Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 124(6): 063001, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32109098

ABSTRACT

Polar molecules in superpositions of rotational states exhibit long-range dipolar interactions, but maintaining their coherence in a trapped sample is a challenge. We present calculations that show many laser-coolable molecules have convenient rotational transitions that are exceptionally insensitive to magnetic fields. We verify this experimentally for CaF where we find a transition with sensitivity below 5 Hz G^{-1} and use it to demonstrate a rotational coherence time of 6.4(8) ms in a magnetic trap. Simulations suggest it is feasible to extend this to more than 1 s using a smaller cloud in a biased magnetic trap.

2.
J Phys Chem A ; 121(8): 1535-1543, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28156105

ABSTRACT

We have characterized the stereodynamics of the H + LiH (v = 0, j = 0-1) reactive collisions leading to H2 formation through the quantum mechanical analysis of the k-j and k'-j' vector correlations that describe the polarization of the reactants and products, respectively. Our results, which cover the collision energy interval between 10-4 and 1 eV, are unexpectedly complex given the apparent simplicity and featureless nature of the potential energy surface for the LiH2 system and point toward the existence of a dynamical barrier connected to the centrifugal barrier. Both reactants and products, in particular the second ones, display strong directional preferences in the cold region that indicate a bias for collinear approaching and departing geometries and are independent of the final state of the products. As more energy is available for the reaction, the polarization of reactants and products becomes weaker and strongly dependent on the final state. While stereodynamical control is feasible and significant in the cold region, its extent becomes negligible for other energetic regimes.

3.
Nat Commun ; 7: 13439, 2016 11 11.
Article in English | MEDLINE | ID: mdl-27834381

ABSTRACT

In the last decade, the development of theoretical methods has allowed chemists to reproduce and explain almost all of the experimental data associated with elementary atom plus diatom collisions. However, there are still a few examples where theory cannot account yet for experimental results. This is the case for the preferential population of one of the Λ-doublet states produced by chemical reactions. In particular, recent measurements of the OD(2Π) product of the O(3P)+D2 reaction have shown a clear preference for the Π(A') Λ-doublet states, in apparent contradiction with ab initio calculations, which predict a larger reactivity on the A'' potential energy surface. Here we present a method to calculate the Λ-doublet ratio when concurrent potential energy surfaces participate in the reaction. It accounts for the experimental Λ-doublet populations via explicit consideration of the stereodynamics of the process. Furthermore, our results demonstrate that the propensity of the Π(A') state is a consequence of the different mechanisms of the reaction on the two concurrent potential energy surfaces.

4.
Chem Sci ; 7(9): 6281, 2016 09 01.
Article in English | MEDLINE | ID: mdl-30123468

ABSTRACT

[This corrects the article DOI: 10.1039/C5SC03373J.].

5.
Chem Sci ; 7(1): 642-649, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-28791109

ABSTRACT

Differential cross sections (DSCs) of the HD(v', j') product for the reaction of H atoms with supersonically cooled D2 molecules in a small number of initial rotational states have been measured at a collision energy of 1.97 eV. These DCSs show an oscillatory pattern that results from interferences caused by different dynamical scattering mechanisms leading to products scattered into the same solid angle. The interferences depend on the initial rotational state j of the D2(v = 0, j) reagent and diminish in strength with increasing rotation. We present here a detailed explanation for this behavior and how each dynamical scattering mechanism has a dependence on the helicity Ω, the projection of the initial rotational angular momentum j of the D2 reagent on the approach direction. Each helicity corresponds to a different internuclear axis distribution, with the consequence that the dependence on Ω reveals the preference of the different quasiclassical mechanisms as a function of approach direction. We believe that these results are general and will appear in any reaction for which several mechanisms are operative.

6.
J Chem Phys ; 143(6): 064302, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26277133

ABSTRACT

The explicit consideration of the vector correlations is an essential step when it comes to determining the mechanism of chemical reactions. Usual vector correlations involve initial and final relative velocity vectors and rotational angular momenta. However, the correlation between the orbital, ℓ, and rotational, j, angular momenta has seldom received any attention. In this article, we present a semiclassical methodology capable of describing the ℓ-j correlation that may serve as a connection between the quantum and quasiclassical treatments. Using the scattering matrix in the orbital angular momentum representation, the ℓ-j correlation is expressed as a probability density function of the angle formed by both vectors. This technique is exemplified through the H + D2 reaction and its accuracy is appraised by comparing with results derived from calculations based on quasiclassical trajectories.

7.
J Phys Chem A ; 119(50): 12245-54, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26305719

ABSTRACT

We have analyzed the influence of the rotational excitation on the H + D2(v = 0, j) reaction through quantum mechanical (QM) and quasiclassical trajectories (QCT) calculations at a wide range of total energies. The agreement between both types of calculations is excellent. We have found that the rotational excitation largely increases the reactivity at large values of the total energy. Such an increase cannot be attributed to a stereodynamical effect but to the existence of recrossing trajectories that become reactive as the target molecule gets rotationally excited. At low total energies, however, recrossing is not significant and the reactivity evolution is dominated by changes in the collision energy; the reactivity decreases with the collision energy as it shrinks the acceptance cone. When state-to-state results are considered, rotational excitation leads to cold product's rovibrational distributions, so that most of the energy is released as recoil energy.

8.
Phys Chem Chem Phys ; 16(45): 24800-12, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-25317975

ABSTRACT

We have performed a dynamical study of the endothermic and barrierless C(+) + H2((1)Σg(+)) → CH(+)((1)Σg(+)) + H reaction for different initial rotational states of the H2(v = 0) and H2(v = 1) manifolds. The calculations have been carried out using quasiclassical trajectories and the Gaussian binning methodology on a recent potential energy surface [R. Warmbier and R. Schneider, Phys. Chem. Chem. Phys., 2011, 13, 10285]. Both state-selected integral cross sections as a function of the collision energy and rate coefficients, kv,j(T), have been determined. We show that rotational excitation of the reactants is as effective as vibrational excitation when it comes to increasing the reactivity, and that both types of excitation could contribute to explain the unexpectedly high abundance of CH(+) in the interstellar media. Such an increase in reactivity takes place by suppressing the reaction threshold when the internal energy is sufficient to overcome the endothermicity. Whenever this is the case, the excitation functions at collision energies Ecoll ≤ 0.1 eV display a ∝E(-1/2)coll dependence. However, the absolute values of the state selected kv=1(T) are one order of magnitude below the Langevin model predictions. The disagreement between the approximately derived experimental rate coefficients for v = 1 and those calculated by this and previous theoretical treatments is due to the neglect of the effect of the rotational excitation in the derivation of the former. In spite of the deep well present in the potential energy surface, the reaction does not show a statistical behaviour.

9.
Phys Chem Chem Phys ; 16(21): 9808-18, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24366414

ABSTRACT

The dynamics of the asymmetric D + MuH (Mu = Muonium) reaction leading to Mu exchange, DMu + H, and H abstraction, DH + Mu, channels has been investigated using time-independent quantum mechanical (QM) calculations. Reaction probabilities, cross sections, cumulative reaction probabilities, and rate coefficients were determined for the two exit channels of the reaction. Quasiclassical trajectory (QCT) calculations were also performed in order to check the reliability of the method for this reaction and to discern the genuine quantum effects. Overall, the Mu exchange channel exhibits more structured reaction probabilities and cross sections with much larger rate coefficients than the H abstraction counterpart. Over the 100-1000 K temperature interval considered in this study, the QM rate coefficients for the Mu exchange vary between ≈5 × 10(-15) and 2 × 10(-11) cm(3) s(-1) and those for the generation of DH + Mu between 2 × 10(-18) and 3.5 × 10(-12) cm(3) s(-1). In common with the rest of the isotopologues of the H + H2 system, the height of the respective barriers in the collinear (symmetric stretch) vibrationally adiabatic potential energy curves matches the classical total energy threshold very accurately. Indeed, the lower and narrower vibrationally adiabatic collinear barrier as compared with that for the DH + Mu formation determines the preponderance of the DMu + H channel. Comparison of QM and QCT results and their analysis show that tunneling accounts for the reactivity at energies below the height of these barriers and that its effect on the rate coefficients becomes appreciable below 300 K. As expected, with growing temperature the contribution of tunneling to the global reactivity decreases markedly, but the rate coefficients are still much higher for the Mu exchange channel due to the effect of MuH rotational excitation that boosts the formation of DMu while diminishing the H abstraction channel that leads to DH formation. The analysis of the thermal cumulative reaction probabilities of the two channels indicates that at the lowest energies/temperatures the reaction into the DH + Mu channel takes place via'leakage' from collisions proceeding along the DMu + H reaction path.

10.
Phys Chem Chem Phys ; 15(32): 13513-22, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23823942

ABSTRACT

From a kinetics standpoint, reactive molecular collisions are the building blocks of the mechanisms of chemical reactions. In contrast, a dynamics standpoint reveals molecular collisions to have their own internal mechanisms, which are not mere theoretical abstractions: through suitable preparation of the reactants internal and stereochemical states, features of the mechanisms of a reactive molecular collision can be made evident and used as "handles" to control the reaction outcome. Using time-independent quantum dynamical calculations, we demonstrate this for the Br + H2(v = 0-1, j = 2) → H + HBr reaction in the 1.0-1.6 eV range of total energies. Despite its pronounced effect on reactivity, which is in agreement with the predictions from Polanyi rules, reactant vibration is found to have little effect on the mechanism of this endoergic, late-barrier reaction. Analysis of the correlations between directional reaction properties shows that the collision stereochemistry strongly depends on the total energy, but not on how this energy is partitioned between reactant translation and vibration. The stereodynamical preferences implied by the collision mechanisms determine how and to what extent one can control the reaction. Regarding the overall reaction, the extent of control is found to be large near the reaction threshold but not when the total energy is high. Regarding state-to-state reactions, the effect of reactant stereochemistry on the product rotational state distribution is found to be nontrivial and energy dependent.


Subject(s)
Bromides/chemistry , Bromine/chemistry , Hydrogen/chemistry , Quantum Theory , Stereoisomerism
11.
J Phys Chem A ; 117(32): 7030-41, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23477493

ABSTRACT

Time-independent quantum mechanical calculations have been performed in order to characterize the dynamics and stereodynamics of Cl + HD reactive collisions. Calculations have been carried out at two different total energy values and for various initial states using the adiabatic potential energy surface by Bian and Werner [J. Chem. Phys. 2000, 112, 220]. Special attention has been paid to the reaction with HD(v = 1) for which integral and differential cross-sections have been calculated and the effect of vibrational vs translational energy on the reactivity has been examined. In addition, the reactant polarization parameters and polarization-dependent differential cross-sections have been determined. From these results, the spatial preferences of the reaction and the extent of the control of the cross sections achievable through a suitable preparation of the reactants have been also studied. The directional requirements are tighter for the HCl channel than for the DCl one. Formation of the products takes place preferentially when the rotational angular momentum of the HD molecule is perpendicular to the reactants approach direction. Cross-sections and polarization moments computed from the scattering calculations have been compared with experimental results by Kandel et al. [J. Chem. Phys. 2000, 112, 670] for the reaction with HD(v = 1) produced by stimulated Raman pumping. The agreement so obtained is good, and it improves the accordance found in previous calculations with other methodologies and potential energy surfaces.

12.
Phys Chem Chem Phys ; 14(47): 16338-48, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23131899

ABSTRACT

The dynamics and mechanism of the O((1)D) + HF → F + OH reaction have been studied through quasi-classical trajectory calculations carried out on the 1(1)A' Potential Energy Surface (PES) fitted by Gómez-Carrasco et al. [Chem. Phys. Lett., 2007, 435, 188]. The influence of the collision energy and the initial rovibrational state on the reaction has been considered. As a result of this study, we conclude that for v = 0 the reactive collisions take place exclusively through an indirect mechanism that involves a long-lived complex. Interestingly and somewhat unexpectedly for a barrierless reaction, vibrational excitation causes a large enhancement of the reactivity due to the concurrence of a direct abstraction mechanism. Unlike other reactions also taking place on a barrierless PES featuring deep wells, no insertion mechanism is observed in O((1)D) + HF reactive collisions.

13.
Phys Chem Chem Phys ; 14(28): 9977-87, 2012 Jul 28.
Article in English | MEDLINE | ID: mdl-22710423

ABSTRACT

This article presents a methodology for the determination of the k-j-k' three-vector correlation assuming a statistical model for atom-diatom reactions; k and k' are the reagent-approach and product-recoil directions, respectively, and j is the rotational angular momentum of the reagent diatomic. Although the polarization of reagent angular momentum is in most cases negligible, conservation of the triatomic parity imposes a certain polarization for some combinations involving low reagent and product rotational states. Statistical and quantum-mechanical polarization-dependent differential cross sections were calculated for the barrierless D(+) + H(2)(v = 0,j) → HD(v' = 0,j') + H(+) reaction. The agreement between the two is in most cases excellent, confirming the statistical character of the reaction at low and moderate collision energies.

14.
Phys Chem Chem Phys ; 14(8): 2911-20, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22258058

ABSTRACT

Based on quantum mechanical scattering (QM) calculations, we have analyzed the polarization of the product hydrogen molecule in Cl + H(2) (v = 0, j = 0) inelastic collisions. The spatial arrangements adopted by the rotational angular momentum and internuclear axis of the departing molecule have been characterized and used to prove that two distinct mechanisms, corresponding to different dynamical regimes, are responsible for the inelastic collisions. Such mechanisms, named as low-b and high-b, correlate with well defined ranges of impact parameter values, add in an essentially incoherent way, and can be clearly differentiated through the quantum mechanical polarization moment that measures the orientation of the products rotational angular momentum with respect to the scattering plane. Other directional effects turn out to fail when it comes to distinguishing the mechanisms. Quasiclassical trajectories (QCT) calculations have been used as a supplement to the purely quantum mechanical analysis. By combining QM and QCT results, which are in very good agreement, we have succeeded in obtaining a clear and meaningful picture of how the two types of collisions take place.


Subject(s)
Chlorides/chemistry , Hydrogen/chemistry , Energy Transfer , Quantum Theory
15.
J Phys Chem Lett ; 3(20): 2959-63, 2012 Oct 18.
Article in English | MEDLINE | ID: mdl-26292233

ABSTRACT

Both experiment and theory recently showed that the H + D2(v = 0, j = 0) → HD(v' = 4, j') + D reactions at a collision energy of 1.97 eV display a seemingly anomalous HD product angular distribution that moves in the backward direction as the value of j' increases and the corresponding energy available for product recoil decreases. This behavior was attributed to the presence of a centrifugal barrier along the reaction path. Here, we show, using fully quantum mechanical calculations, that for low recoil energies, the collision mechanism is nearly independent of the HD internal state and the HD product becomes aligned, with its rotational angular momentum j' pointing perpendicular to the recoil momentum k'. As the kinetic energy to overcome this barrier becomes limited, the three atoms adopt a nearly collinear configuration in the transition-state region to permit reaction, which strongly polarizes the resulting HD product. These results are expected to be general for any chemical reaction in the low recoil energy limit.

16.
J Chem Phys ; 135(6): 064301, 2011 Aug 14.
Article in English | MEDLINE | ID: mdl-21842927

ABSTRACT

While Cl + H(2) reactive collisions have been a subject of numerous experimental and theoretical studies, inelastic collisions leading to rotational energy transfer and/or vibrational excitation have been largely ignored. In this work, extensive quantum mechanical calculations covering the 0.5-1.5 eV total energy range and various initial rovibrational states have been carried out and used to perform a joint study of inelastic and reactive Cl + H(2) collisions. Quasiclassical trajectories calculations complement the quantum mechanical results. The analysis of the inelastic transition probabilities has revealed the existence of two distinct dynamical regimes that correlate with low and high impact parameters, b, and are neatly separated by glory scattering. It has been found that while high-b collisions are mainly responsible for |Δj| = 2 transitions which dominate the inelastic scattering, they are very inefficient in promoting higher |Δj| transitions. The effectiveness of this type of collision also drops with rotational excitation of H(2). In contrast, reactive scattering, that competes with |Δj| > 2 inelastic transitions, is exclusively caused by low-b collisions, and it is greatly favored when the reactants get rotationally excited. Previous studies focusing on the reactivity of the Cl + H(2) system established that the van der Waals well located in the entrance channel play a key role in determining the mechanism of the collisions. Our results prove this to be also a case for inelastic processes, where the origin of the double dynamical regime can be traced back to the influence exerted by this well that shapes the topology of the entrance channel of the Cl-H(2) system.

17.
Phys Rev Lett ; 105(15): 153201, 2010 Oct 08.
Article in English | MEDLINE | ID: mdl-21230899

ABSTRACT

We investigate the interactions between ultracold alkali-metal atoms and closed-shell atoms using electronic structure calculations on the prototype system Rb+Sr. There are molecular bound states that can be tuned across atomic thresholds with a magnetic field and previously neglected terms in the collision Hamiltonian that can produce zero-energy Feshbach resonances with significant widths. The largest effect comes from the interaction-induced variation of the Rb hyperfine coupling. The resonances may be used to form paramagnetic polar molecules if the magnetic field can be controlled precisely enough.

18.
J Chem Phys ; 130(3): 031102, 2009 Jan 21.
Article in English | MEDLINE | ID: mdl-19173502

ABSTRACT

A detailed comparison of quantum mechanical (QM) and quasiclassical trajectory (QCT) integral and differential cross sections (DCSs) as well as opacity functions is presented in this work for the vibrationally inelastic collisions of H+D(2)(v=0,j=0)-->H+D(2)(v(')=3,j(')) at 1.72 eV collision energy. These results are also compared with the experimental differential cross sections by Greaves et al. [Nature (London) 454, 88 (2008)]. The agreement between QCT and QM results is fairly good but some differences are appreciable, and it is shown that the experimental results are in a somewhat better agreement with the calculated QM DCS. The present results and their analysis confirm that the vibrational excitation takes place by elongation of the D-D bond in a "tug-of-war" mechanism, where the incoming H atom and one of the D atoms compete for the formation of a bond with the other D atom, as proposed by Greaves et al. It is also found that these collisions may give rise to the formation of short-lived collision complexes (tau(coll)=35-50 fs) that can be traced back to the presence of relatively deep wells in the potential surface when the original D-D bond is stretched. The analysis of the trajectories into v(')=3 reveals that most of them cross at least twice the reaction barrier via a recrossing mechanism.

19.
Phys Chem Chem Phys ; 8(42): 4881-96, 2006 Nov 14.
Article in English | MEDLINE | ID: mdl-17066178

ABSTRACT

The effect of reactant polarisation on the dynamics of the title reaction at collision energies up to 1.6 eV is analysed in depth. The analysis takes advantage of two novel theoretical concepts: intrinsic reaction properties and stereodynamical portraits. Exact quantum methods are used to determine the polarisation moments that quantify the intrinsic reactant polarisation at various levels of detail, including or not product state and/or scattering angle resolution. The data is then examined with the aid of stereodynamical portraits, which facilitate the rationalisation of the stereochemical effects that are relevant for the reaction dynamics. This allows for detailed characterisations of the so-called direct and delayed reaction mechanisms.


Subject(s)
Deuterium/chemistry , Hydrogen/chemistry , Models, Chemical , Quantum Theory , Models, Molecular
20.
J Chem Phys ; 125(13): 133104, 2006 Oct 07.
Article in English | MEDLINE | ID: mdl-17029430

ABSTRACT

This article uses theoretical methods to study the dependence on stereodynamical factors of the mechanism and reactivity of the F+H2 reaction at low and ultralow collision energies. The impact of polarization of the H2 reactant on total and state-to-state integral and differential cross sections is analyzed. This leads to detailed pictures of the reaction mechanism in the cold and ultracold regimes, accounting, in particular, for distinctions associated with the various product states and scattering angles. The extent to which selection of reactant polarization allows for external control of the reactivity and reaction mechanism is assessed. This reveals that even the simplest of reactant polarization schemes allows for fine, product state-selective control of differential and (for reactions involving more than a single, zero orbital angular momentum partial wave) integral cross sections.

SELECTION OF CITATIONS
SEARCH DETAIL
...